

Enterprise Centric Offload System

Aaron Gember & Aditya Akella

Coping with Handheld Demands

- Increasingly complex mobile applications
 - High CPU and energy demands e.g., speech recognition
 - Work with sensitive data e.g., health records
- Application-independent offloading
 - Enables performance improvements and energy savings without re-writing applications
 - E.g., CloneCloud [Chun '11], MAUI [Cuervo '10], Silk

Roadblocks to Offloading

Privacy and trust: sensitive data in application state can be leaked in transit or on resources

Resource availability: diverse set of compute resources with varying availability and capacity

Scalability: multiple handhelds with different goals must be able to simultaneously offload

Eliminate these roadblocks to make offloading feasible for enterprise networks

- How do we assign offloads to compute resources to provide the most benefits to many handheld users?
 - Varying goals latency improvement, energy savings
 - Limited set of trusted resources
 - Changing resource availability, and diverse capabilities
 - Overhead of state transfer state size, channel quality

GENI Resources

OpenFlow

Live Demo

How our Enterprise Centric Offloading System (ECOS) assigns compute resources