
GENI Cloud PlanetLab (SFA)
ABAC Integration

David Cheperdak

November 2nd to 4th, 2011

djbchepe@cs.uvic.ca

• Develop:

– ABAC based authentication mechanism for PL

– API specification (including authorization)

– automated testing framework

• Integrate:
– libABAC into PlanetLab

Project Objectives

November 2nd to 4th, 2011

1. Automate authorization for users

2. Interoperability

3. Automated delegation

4. Automated agents

Why ABAC?

November 2nd to 4th, 2011

PLC

SM

AMRM

CM CM CM

PlanetLab Configurations

November 2nd to 4th, 2011

PLCEMULAB

SM

AMRM

CM CM CM

SM

PLCVINI

SM

AMRM

CM CM CM

AM

CM CM CM

PLCEMULAB

SM

AMRM

CM CM CM

SM

AM

CM CM CM

1. 2.

3. 4.

PLCPLE

SM

AMRM

CM CM CM

SM

AMRM

CM CM CM

PlanetLab Configurations

November 2nd to 4th, 2011

Color Name

 Slice Interface

 Registry Interface

 Management Interface

 Research Interface

AM: Aggregate Manager

CM: Component Manager

RM: Registry Manager

SM: Slice Manager

CRED CRED

• Clearly define and document API:
– dependencies
– functionality
– authorization mechanisms
– specification

• Verify, repair and standardize existing authorization
mechanisms

• Integrate ABAC into PlanetLab
• Test and verify:

– framework interoperability
– ABAC functionality
– PlanetLab functionality

• Analyze:
– PlanetLab performance

ABAC Integration Process

November 2nd to 4th, 2011

Client side (Request Action) Server side (Execute Action)

SSH Key Credentials supplied to SSL XMLRPC SSH Key Credentials received SSL XMLRPC

Key to Slice association Key to Slice association

User GID to Cert. verification User GID to Cert. verification

Perform Action Cert. verification Perform Action Cert. verification

Cert. Trust Verification Cert. Trust Verification

Authorization Overview:

Current authorization process

November 2nd to 4th, 2011

Client side (Request Action) Server side (Execute Action)

SSH Key Credentials supplied to SSL XMLRPC SSH Key Credentials received SSL XMLRPC

Key to Slice association (ABAC + PlanetLab)

User GID to Cert. verification (ABAC)

Perform Action Cert. verification (ABAC)

Cert. Trust Verification (ABAC)

Authorization Overview:

libABAC authorization process

November 2nd to 4th, 2011

November 2nd to 4th, 2011

#API Found in the PlanetLab Aggrgegate Manager

def CreateSliver(api, xrn, creds, rspec_str, users, call_id):

 . . . Continued . . .

 if not credential:

 credential = api.getCredential()

 hrn, type = urn_to_hrn(xrn)

 valid_cred = api.auth.checkCredentials(creds, 'createsliver', hrn)[0]

 caller_hrn = Credential(string=valid_cred).get_gid_caller().get_hrn()

 threads = ThreadManager()

 for aggregate in api.aggregates:

 if caller_hrn == aggregate and aggregate != api.hrn:`

 continue

 server = api.aggregates[aggregate]

 threads.run(_CreateSliver, aggregate, server, xrn, credential, rspec.toxml(),

users, call_id)

 . . . Continued . . .

Server Side API: CreateSliver()

• Authorization by SSH Key:
• confirmation must occur every time the API is called

Authorization Mechanisms:

• Every manager within SFA PlanetLab:

– Requires comprehensive authorization checking

– Utilize a variety of authorization libraries

• ABAC Integration

– Standardizes authorization mechanism

Authorization Mechanisms:

 def checkCredentials(self, creds, operation, hrn = None):

 valid = []

 # check if a credential is associated with an instance

 if not isinstance(creds, list):

 creds = [creds]

 for cred in creds:

 try:

 # authorize operation by a particular user on a slice

 self.check(cred, operation, hrn)

 valid.append(cred)

 except:

 cred_obj=Credential(string=cred)

 continue

 if not len(valid):

 raise InsufficientRights('Access denied: %s -- %s' %

(error[0],error[1]))

 return valid

November 2nd to 4th, 2011

Authorization Mechanisms:

Server Side API: CreateSliver()

• Authorization by SSH Key:
• preliminary authorization mechanisms including the presence of a certificate

associated with the instance

• Every manager within SFA PlanetLab:

– Does not support attribute driven resource
association

– Every user must be bound to a slice instead of
facilitating a generic association such as role

• ABAC Integration

– Supports generic role driven association

Authorization Mechanisms:

 def check(self, cred, operation, hrn = None):

 self.client_cred = Credential(string = cred)

 self.client_gid = self.client_cred.get_gid_caller()

 self.object_gid = self.client_cred.get_gid_object()

 ...Continued...

 # verify the client_gid matches client's certificate

 if self.peer_cert:

 self.verifyPeerCert(self.peer_cert, self.client_gid)

 # validate client authorization to perform operation

 if operation:

 if not self.client_cred.can_perform(operation):

 raise InsufficientRights(operation)

 # verify the certificate signature

 if self.trusted_cert_list:

 self.client_cred.verify(self.trusted_cert_file_list,

self.config.SFA_CREDENTIAL_SCHEMA)

 else:

 raise MissingTrustedRoots(self.config.get_trustedroots_dir())

 ...Continued...

 return True

November 2nd to 4th, 2011

Authorization Mechanisms:

Server Side API: CreateSliver()

• Every manager within SFA PlanetLab:
– User groups are used to verify slice association

– A User must be verified if they can perform and action
based on a unique key

– User credentials must be checked if it is trusted

• ABAC Integration
– User groups are replaced by roles that can be easily

allocated and de-allocated

– Performing actions within PL now support role driven
verification

Authorization Mechanisms:

#ABAC Library Calls from Python

def authorize(self, principal):

 store = CredentialManager()

 context = Context()

 context.load_directory(keystore)

 # verify the certificate signatures, obtain user role and

permissions

 (success, credentials) = context.query(role, principal)

if success:

 for cred in credentials:

 print ”%s <- %s” %(cred.head().string(), cred.tail().string())

November 2nd to 4th, 2011

Authorization Mechanisms:

libABAC Integration

//Determine if principal possesses role if so return a proof of that,

otherwise return a partial proof of it

public QueryResult query(String role, String principal)

 {

 derive_implied_edges();

 Query q = new Query(g);

 Graph<Role, Credential> rg = q.run(role, principal);

/* return all credentials (edges) and boolean if the query found

 principle vertices */

 return new QueryResult(rg.getEdges(), q.successful());

 }

Conclusions

deter ABAC Integration

• Simplifies authorization procedures:
• bundling authority to a given certificate (Credential)
• bundling a proof of identity, authorization and role with a

certificate(Credential)
• Authorization reduces authorization complexity by:

• eliminating confirmation of identify, role and permissions client side
• Improves security by:

• Standardizing security and authorization mechanisms across frameworks
• Enforcing role, authority and identity through signed certificates
• Scalability as permissions, role and association among users change
• Easy to revoke an identity without modifying global permissions

November 2nd to 4th, 2011

Timeline

• September to October 2011

– System analysis (Omni, PlanetLab, Emulab)

– Prototyping, documentation and UML

• November 1st to Nov 30th

– Final integration, expanding authorization features

– Initial development of automated tester (Draft test Cases)

• December 1st to December 20th

– Automated testing (Finalize test cases, verification)

– Performance analysis (PlanetLab and ABAC)

November 2nd to 4th, 2011

Development:
• Automated Tester

– Integration testing
– ABAC Verification

• ABAC Integration
– Integrate ABAC into all essential API within PlanetLab

• PlanetLab
– Ensure PlanetLab API incorporate functionally correct

authorization mechanisms
– Remove redundant or dead code

• Specification
– API specification will be developed

Future Work

November 2nd to 4th, 2011

• Source Contribution:

– Commit to source tree

• Questions?

• Feedback?

– Reasonable?

– Present errors?

– Other ABAC project deadlines and goals?

– Inter-platform ABAC testing?

Questions and Feedback

David Cheperdak

djbchepe@cs.uvic.ca

November 2nd to 4th, 2011

