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a b s t r a c t

User communities are rapidly transitioning their ‘‘traditional desktops’’ that have dedi-
cated hardware and software installations into ‘‘virtual desktop clouds’’ (VDCs) that are
accessible via thin-clients. To allocate and manage VDC resources for Internet-scale desk-
top delivery, existing works focus mainly on managing server-side resources based on util-
ity functions of CPU and memory loads, and do not consider network health and thin-client
user experience. Resource allocations without combined utility-directed information of
system loads, network health and thin-client user experience in VDC platforms inevitably
results in costly guesswork and over-provisioning of resources. In this paper, we develop
an analytical model viz., ‘‘Utility-Directed Resource Allocation Model (U-RAM)’’ to solve
the combined utility-directed resource allocation problem within VDCs. Our solution
involves an iterative algorithm that leverages utility functions of system, network and
human components obtained using a novel virtual desktop performance benchmarking
toolkit viz., ‘‘VDBench’’ that we developed. The combined utility functions are used to
direct decision schemes based on Kuhn–Tucker optimality conditions for creating user
desktop pools and determining optimal resource allocation size/location. We deploy
VDBench in a VDC testbed featuring: (a) popular user applications (Spreadsheet Calculator,
Internet Browser, Media Player, Interactive Visualization), and (b) TCP/UDP based thin-
client protocols (RDP, RGS, PCoIP) under a variety of user load and network health
conditions. Simulation results based on the utility functions obtained from the testbed
demonstrate that our solution maximizes VDC scalability i.e., ‘VDs per core density’, and
‘user connections quantity’, while delivering satisfactory thin-client user experience.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Common user applications such as email, photos, videos
and file storage are already being supported at Internet-
scale by ‘‘cloud’’ platforms (e.g., Amazon S3, Google Mail,
. All rights reserved.
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and Microsoft Azure). Even academia is increasingly adopt-
ing cloud infrastructures and related research themes (e.g.,
NSF CluE, DOE Magellan) to support desktop delivery for
various science communities. The next frontier for these
user communities will be to transition ‘‘traditional desk-
tops’’ that have dedicated hardware and software installa-
tions into ‘‘virtual desktop clouds’’ (VDCs) that are
accessible via thin-clients. The drivers for this transition
are obvious and include: (i) desktop support in terms of
operating system, application and security upgrades will
be easier to manage centrally, (ii) the number of underuti-
lized distributed desktops unnecessarily consuming power
will be reduced, (iii) mobile users will have wider access to
their applications and data, and (iv) data security will be
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improved because confidential user data does not physi-
cally reside on thin-clients. VDC platform providers are
beginning to host virtual desktops by augmenting do-
main-specific ‘‘community clouds’’ [1] (e.g., education
clouds), and are customizing desktops for these communi-
ties through ‘pay-as-you-go’ services such as: Desktop as a
Service (DaaS), Infrastructure as a Service (IaaS), and Soft-
ware as a Service (SaaS).

Fig. 1 shows the various system and network compo-
nents in a VDC comprising of two or more inter-connected
data centers that handle thin-client connections from sev-
eral user sites on the Internet. At each data center, a hyper-
visor framework (e.g., VMware ESXi, OpenVZ, Xen) is used
to create virtual hosted desktops (VDs) that host popular
applications (e.g., Excel, Internet Explorer, Media Player)
as well as advanced scientific computing applications
(e.g., Matlab, Moldflow). The VDs share common physical
hardware and attached storage drives. At the thin-client
side, users connect to a connection broker via the Internet
using TCP or UDP based remote display devices. Examples
of thin-client protocols used by the remote display devices
include the open-source Virtual Network Computing (VNC
Fig. 1. Virtual desktop cloud system
via TCP), Microsoft Remote Desktop Protocol (RDP via TCP),
HP Remote Graphics Software (RGS via TCP), and Teradici
PC over IP (PCoIP via UDP). The connection broker authen-
ticates users using technologies such as active directory,
and allows users to access their entitled desktops. The
VDC hypervisors are instrumented to not only modify
and manage operating system/applications within VDs,
but are also tasked with the appropriate VD resource sizing
and location determination while servicing user desktop
requests. The considerations that influence mapping of
user desktop requests to distributed VDs include: (a) load
balancing to improve VDC scalability, (b) energy awareness
to reduce VD operation cost, and (c) express migration
(e.g., during disaster recovery) for continued VDC
availability.

To allocate and manage VDC resources for Internet-
scale user workloads of desktop delivery, ‘‘virtual desktop
cloud service providers’’ (CSPs) are faced with several chal-
lenges. One major challenge for a CSP will be to large-scale
provision and adapt the cloud platform CPU and memory
resources to deliver satisfactory user-perceived ‘interactive
response times’ (a.k.a. timeliness) as negotiated in Service
and network components.
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Level Agreements (SLAs). Given the fact that memory is the
most expensive and possibly the most contended resource
in VDCs (i.e., users will idle their CPUs but will keep their
applications always open on a desktop), it is a challenge
for CSPs to suitably ‘‘overcommit’’ memory sizing for vir-
tual desktops based on user activity profiling. Moreover,
virtual desktop user activity when interacting with appli-
cations has intermittent spikes and bursts that further
complicates the overcommitment estimation for CPU and
memory sizing to satisfy timeliness. Hence, overcommit-
ment in VDCs is more complex than in the case of server-
virtualization, where user workloads can be modeled as
transactions that have predictable resource consumption
characteristics [4]. From the thin-client perspective,
remote display protocols differ in terms of network band-
width consumption from encoding (a.k.a. coding efficiency)
based on how they crisply display different content such as
text, images, and video. Further, since they employ differ-
ent underlying TCP or UDP based protocols, they exhibit
varying levels of user experience robustness under
degraded network conditions. Hence, another challenge
for CSPs is to suitably select thin-client display protocols
based on application context such that coding efficiency
is addressed while delivering satisfactory user Quality of
Experience (QoE) even under degraded network
conditions.

Our work is motivated by the fact that CSPs need frame-
works and tools today that can enable them to handle the
above challenges to build and manage VDCs at Internet-
scale. To cope with increasing user workloads, extensive
work has been done to efficiently manage server-side
resources based on utility functions1 of CPU and memory
loads [2–5]. However, there is surprisingly sparse work on
resource adaptation within VDCs that is coupled with utility
functions of network health and thin-client user QoE. Works
such as [16,17] highlight the need to incorporate network
and user QoE factors into VDC resource allocation decisions.
It is self-evident that any VDC platform’s capability to suc-
cessfully support virtual desktops is a function of both the
server-side desktop performance as well as the remote
user-perceived QoE. In other words, a CSP can provision ade-
quate CPU and memory resources to a VD in the cloud, but if
the thin-client protocol configuration does not account for
network health degradations and application context, the
virtual desktop will be unusable for the user. Hence, lack of
proper ‘‘human-and-network awareness’’ in VDC platforms
inevitably results in costly guesswork and over-provisioning
while managing physical resources, which consequently
annoys users due to high service cost and unreliable QoE.

In this paper, we develop an analytical model viz., Util-
ity-Directed Resource Allocation Model (U-RAM) to solve the
combined utility-directed resource allocation problem
within VDCs along timeliness and coding efficiency quality
dimensions. We show how this problem basically approx-
imates to a binary integer programming problem whose
solution is NP-hard. To solve this problem, we propose an
1 A utility function indicates how much of application performance can
be increased with larger resource allocation. Beyond a certain point,
application utility saturates and any additional resource allocation fails to
further increase application performance.
iterative algorithm that has fast convergence. The iterative
algorithm uses combined utility-directed decision schemes
based on Kuhn–Tucker optimality conditions [11], and the
previously mentioned considerations that influence map-
ping of user desktop requests to distributed VDs. The ulti-
mate optimization objective is to allocate resources (i.e.,
CPU, memory, network bandwidth) such that the global
utility (i.e., combined utility of all VDs at a data center) is
maximized under the constraint that each VD at least
meets it minimum quality requirement along timeliness
and coding efficiency dimensions.

The implementation of our solution involves
two-phases shown in Fig. 2. The first phase involves char-
acterizing utility functions of system, network and human
components for offline simulated user loads. The utility
functions correspond to application (e.g., Internet Explorer,
Media Player) profiles and user group (e.g., Engineering
Industry, Campus Computer Lab) profiles. To collect mea-
surements for characterizing the utility functions, we
leverage a virtual desktop performance benchmarking
toolkit viz., ‘‘VDBench’’ that we developed in [8]. The
VDBench uses a novel methodology that allows correlation
of thin-client user events with server-side resource perfor-
mance events by virtue of ‘marker packets’ that leverage
and extend our earlier research on slow-motion bench-
marking of thin-clients [14]. In this paper, the novelty of
using our VDBench toolkit is to obtain user application
and group profiles in an offline manner, which can then
be leveraged online by our iterative algorithm to: (a) create
user desktop pools, and (b) optimize mapping of resource
allocation size/location in the VDC under real user loads.

We deploy VDBench in a VDC testbed featuring: (a)
popular user applications (Spreadsheet Calculator, Internet
Browser, Media Player, Interactive Visualization), and (b)
TCP/UDP based thin-client protocols (RDP, RGS, PCoIP) un-
der a variety of user load and network health conditions.
Simulation results based on the utility functions obtained
from the testbed demonstrate that our solution maximizes
VDC scalability i.e., ‘VDs per core density’, and ‘user con-
nections quantity’, while delivering satisfactory thin-client
user experience.

The remainder of this paper is organized as follows: Sec-
tion 2 formulates the U-RAM problem. Section 3 details our
optimization methodology and iterative algorithm. Section
4 presents the VDBench toolkit. Section 5 explains perfor-
mance results of our proposed U-RAM solution. Section 6
describes related work. Section 7 concludes the paper.
2. Terminology and problem formulation

In this section, we first describe the quality dimensions
and their related metrics. Next, we lay out our U-RAM
problem scope by listing the involved parameters, require-
ments, and assumptions.
2.1. Quality dimensions and metrics

The timeliness quality dimension corresponds to the
perceived interactive response times when a user is inter-
acting with an application. Metrics that fall under this



Fig. 2. Schematic for utility-directed resource allocation in a VDC.
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quality dimension can be grouped under two categories: (i)
atomic task time, and (ii) aggregate task time. Referring to
Fig. 3, atomic task time is measured as the time taken for
an intermediate task to complete while using an applica-
tion. Intermediate tasks could include for e.g., Matlab
application open time, ‘‘Save As’’ task time in Microsoft
Excel or web-page download time in Internet Explorer.
Aggregate task time refers to the overall execution time
of several atomic tasks. Examples of aggregate response
time can be inferred from Fig. 3 by calculating the time dif-
ference between t3 and t0 that corresponds to the time to
Fig. 3. Timeliness metrics in vi
complete a sequence of atomic tasks: opening an applica-
tion, performing application tasks and closing the
application.

The coding efficiency quality dimension corresponds to
the perceived data throughput when an application has
sizeable data flows that are transferred over a network
path and consumed in real-time by a user. Metrics that fall
under this quality dimension include: (i) render time, (ii)
data transmission rate (a.k.a. bandwidth consumption),
and (iii) video quality. Render time can be defined as the
time taken for a screen update of an atomic task to
rtual desktop user tasks.



Fig. 4. Utility of non-linear function approximated to linear function.
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complete, as observed in a network trace. An example is
the time between the first and last packet of network activ-
ity (characterized by increase in packets per second) to go
from-and-to an idle state after an activity burst during a
image page download in a web-browser. Data transmission
rate is the ratio of the amount of data transmitted for an
atomic task screen update or an aggregate task’s screen up-
dates (i.e., consider the case of video playback in a Media
Player), and the corresponding render time. Video quality
in the context of a remote display device using thin-client
protocols such as VNC, RDP, RGS or PCoIP can be defined as
shown in Eq. (1). This definition is based on the video qual-
ity metric developed in [14] that normalizes the perfor-
mance differences when displaying video frames with
UDP and TCP based thin-client protocols. The normaliza-
tion accounts for fast completion times of video frames
playback with image impairments (e.g., tiling) in UDP
based thin-clients, in comparison to relatively long com-
pletion times with no impairments (e.g., frame freezes) in
TCP based thin-clients.

Video Quality ¼

Data Transferred ðaggregate fpsÞ
Render Time ðaggregate fpsÞ

IdealTransferðaggregatefpsÞ
Data Transferred ðatomic fpsÞ

Render Time ðatomic fpsÞ
IdealTransferðatomicfpsÞ

: ð1Þ

All of the above metrics are affected by various factors
such as the: (a) concurrent user load on the VDC system,
(b) level of rapid interactivity in the user application, (c)
network health conditions (e.g., available bandwidth,
latency, loss), and (d) the robustness of the thin-client pro-
tocol employed under degraded network conditions. Their
utility functions in the larger context affect the global
Fig. 5. U-RAM for maximizing U; (a) Desktop pool utility when there are n prov
achieve final desktop pool utility.
utility of a VD in a VDC. Obviously, determining actual val-
ues of above metrics that can be tolerated by users is a sub-
jective process and involves extensive human subject
experimentation [20]. In practice, the acceptable mini-
mum-to-maximum ranges of these metrics for specific
user applications are negotiated within SLAs. Nevertheless,
the ranges can be set by intuition of what general users
perceive as an interactive response time ‘lag’ (e.g., a user
will perceive an undesired lag if a VD does not respond
to a mouse click or does not open an application within a
couple of seconds) or a degraded data transmission
‘throughput’ (e.g., a user will perceive an undesired
throughput if a web-page of an image in a VD does not load
within a couple of seconds).

2.2. The U-RAM problem

The U-RAM enables resource allocations in VDCs such
that SLAs are met while resource overprovisioning is min-
imized. The terms used in U-RAM are defined as follows:

� Let there be n virtual desktops {v1,v2, . . . ,vn} and m
resources {R1,R2, . . . ,Rm}. Note that the resource types
we consider in U-RAM are CPU, memory and network
bandwidth. The considerations that influence the map-
ping of user desktop requests to VDs include: (a) load
balancing to improve VDC scalability (b) energy aware-
ness to reduce the VD operating cost and (c) express
migration for continued VDC availability. These consid-
erations are described in detail in Section 3.3. If there
are l data centers, the VDC’s resource mapper shown
in Fig. 2 maintains a preference list {L1,L2, . . . ,Ll} which
isioned VDs, (b) initial utility of new n + 1th VD, (c) U-RAM iterations to
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is looked-up online to identify the preferred location of
data center resources for a new user desktop request
such that the resource sizing determined by U-RAM
can be provisioned. A VD vi placed at preferred location
l is given by vl,i.
� Resource Rj allocated to vi can be represented as Ri,j. Util-

ity Ui for virtual desktop vi is the utility value generated
by the system when vi is allocated Ri = {Ri,1,Ri,2, . . . ,Ri,n}.
Global utility is given by UðR1;R2; . . . ;RnÞ ¼

Pn
i¼1UiðRiÞ.

� Each VD needs to satisfy quality constraints along d
quality dimensions, {Q1,Q2, . . . ,Qd}. In our study, we
consider SLAs with 2 quality dimensions viz., timeliness
and coding efficiency. Each VD has to be provisioned
with at least minimal resources to satisfy minimum
requirements along each of the quality dimensions
Q mink

. If abundant resources are available in the VDC,
resources can be provisioned such that each VD has
Q maxk

as indicated by the utility functions. Per the defi-
nition of utility, any additional resources provisioned
will not each increase VD’s utility beyond Qmaxk

. In cases
where there are more than minimal resources available
but resources are not abundant, the resource provision-
ing is such that each VD has Q setk

whose value is
Q mink

< Qsetk
< Qmaxk

. The minimal resource require-

ment is expressed as Rmink
i ¼ Rmink

i;1 Rmink
i;2 ; . . . ;Rmink

i;m

n o

where Rmink
i;j P 0; 0 6 j 6 m. A VD is feasible if it is allo-

cated a minimum set of resources on every quality
dimension in the SLA.

The assumptions for U-RAM are as follows:

� System and network resources are limited and maxi-
mum demand of all user VDs cannot be satisfied simul-
taneously. This assumption is valid because, there
otherwise will not be any resource contention and all
the user VDs can be allocated maximum resources.
� Each VD requires a certain minimum resource alloca-

tion to perform satisfactorily for a user; any additional
allocation of resources adds utility to the VD that is per-
ceived by the user as improved VD performance along
timeliness and/or coding efficiency quality dimensions
measured using the metrics described in Section 2.1.
� Utility of a VD increases monotonically with increase in

allocated resources until a point after which, there is no
user perceivable improvement in the quality with any
additional allocation. Empirical results from our VDC
testbed presented in Section 5.1.4 validate this assump-
tion as well as the previous assumption. Moreover, this
assumption is generally true in any computer system.
� Each provisioned VD has sufficient resources to meet

the minimum resource requirements Rmink
i along each

dimension Qk; a new user VD request is rejected when
its handling could potentially violate the SLA compli-
ance along each dimension Qk of an already provisioned
VD. This assumption is valid because accommodating
the new request will result in SLA violations in both
the previously provisioned VD and the new VD.
� We assume that the utility functions are non-decreas-

ing and concave.
Based on the above description, we are required to
make resource allocations to each VD such that the global
utility U(R1,R2, . . . ,Rn) is maximized under the constraint
that every VD is feasible with respect to each of the quality
dimension Qk. This problem lends itself to a binary integer
programming problem that can be shown as follows:

Maximize f ðUÞ ¼
Xn

i¼1

UiðRiÞ

Subject to :
Xn

i¼i

Ri;j 6 Rmax
j 8j ¼ f1; . . . ;mg

Rmin
j 6

Xm

j¼1

Xn

i¼1

Ri;jv i 6 Rmax
j

Rmax
j is a resource allocation point for resource j beyond

which there is no user perceptible improvement in the per-
formance for any further allocation and hence, if allocated
will waste resources and overprovision a VD. Although the
utility function of a VD is a monotonically increasing non-
linear concave function, we adopt constraint programming
to model our problem and approximate it to a piece-wise
linear function as shown in Fig. 4. Such an approximation
is shown to be reasonable as evidenced in works such as
[5,6,9] for similar utility-driven resource allocation
problems.

3. U-RAM optimization methodology

In this section, we first explain the Kuhn–Tucker opti-
mality conditions [11] that we leverage to allocate re-
sources in VDCs based on utility functions. Next, we
describe our iterative algorithm to maximize VDC global
utility U based on the Kuhn–Tucker optimality conditions.
Lastly, we discuss the considerations that influence map-
ping of real users’ desktop requests to distributed VDs in
U-RAM implemented VDCs.

3.1. Kuhn–Tucker optimality conditions

Given that different resource allocation choices yield
different global utility U values, our resource allocation
problem is a 0–1 knapsack problem instance given by

Maximize f ðxÞ ¼
Pn
i¼1

v ixi

Subject to :
Pn
i¼1

WiXi 6W; x 2 f0;1g

Hence, the solution to our problem is NP-hard [19]. In
order to solve the problem, we develop an iterative algo-
rithm explained in Section 3.2 that makes resource alloca-
tion decisions with fast convergence. We derive conditions
for optimality in our iterative algorithm with the following
corollary.

Corollary. Since, a VD’s utility function is concave, it is twice
continuously differentiable, i.e., d2U

dR2 ¼ U00i 6 0 for R > Rmin
i .

Hence, an optimum way to perform resource allocation can be
obtained from Kuhn–Tucker optimality conditions [11] for
such functions.
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A necessary and sufficient condition to perform optimal
resource allocation in VDCs is for {i, j}, i – j with Ri > 0 and
Rj > 0; U0iðRiÞ ¼ U0jðRjÞ.
Proof. The result is a conclusion of the Kuhn–Tucker Theo-
rem. Let us suppose two allocations given by Ri > 0, Rj > 0
and U0iðRiÞ > U0jðRjÞ and i – j, result in an optimal solution.
Since Rj > 0, subtracting an infinitesimally small value from
Rj and adding it to Ri will increase the global utility, since
U0iðRiÞ > U0jðRjÞ. This contradicts our earlier assumption that
it was an optimal allocation as the new allocation increased
the global utility. Hence, for a resource allocation to be optimal,
U0iðRÞ ¼ U0jðRjÞ for i – j with Ri > 0 and Rj > 0 at all times. h

From the above result, we can conclude that the optimal
way to allocate resources in a VDC will be to provision re-
sources to VDs such that their slopes of utility functions are
equal at a given resource allocation decision point. Empir-
ical results from our VDC testbed presented in Section 5.1.4
clearly show that the resource requirements are vastly dif-
ferent for different applications. For example, the CPU
requirement for satisfactory Matlab application’s user
experience is much greater than that for Excel application.
As another example, the network bandwidth requirement
for satisfactory Media Player application’s user experience
is much greater than that of Internet Explorer application.
Consequently, it is not reasonable to allocate identical
amount of resources for different user groups who use dif-
ferent applications or subsets of applications. For argument
sake, we can create a desktop pool for an ‘Engineering Site’
whose users mainly use Matlab, Internet Explorer and
Excel, and a separate pool for a ‘Distance Learning Site’
whose users mainly use Media Player, Internet Explorer
and Excel. Obviously, application grouping within a desk-
top pool depends on the actual desktop requirements of
user groups. Our goal now is to achieve maximized utility
of VDs within a desktop pool given any application group-
ing, which then ensures that the global utility is optimal as
deduced from the Kuhn–Tucker optimality conditions.

3.2. Algorithm to maximize U

We now explain our iterative algorithm’s inner work-
ings to maximize VDC global utility U. We remark that this
algorithm (pseudocode listed in Algorithm 1) resides inside
the Resource Allocation Optimization module shown in
Fig. 2. We presume that the algorithm is aware of the
amount of resources needed to achieve Qmin and Qmax for
each user group through the profiling step with offline
benchmarking measurements in Fig. 2. To convey how
our algorithm maximizes the utility of each desktop pool,
we use the illustration in Fig. 5.

Let us start with a scenario where n VDs belonging to a
desktop pool are already provisioned all the resources
within a VDC with a utility Ux(Qx) that results in Qmax or Qset

as marked in Fig. 5(a). When a new n + 1th VD request ar-
rives, the VDC is aware of the request’s Rmin=max

i for Qmin/max

based on the user group it is originating from, and the cor-
responding profile obtained through offline benchmarking
measurements. Obviously, the new VD’s utility is zero
before any resources are allocated to it as shown in
Fig. 5(b). In each iteration I1 . . . In, the VDC adds resources
to the new VD to increase its slope of utility by subtracting
the corresponding amount of resources from the previ-
ously provisioned VDs. This in turn causes a decrease in
the utility of the previously provisioned VDs in each itera-
tion. The iterations continue as shown in Fig. 5(c) until the
final desktop pool utility is such that the new VD’s utility
slope is same as the (decreased) utility slope of the previ-
ously provisioned VDs.

Algorithm 1. Given a set of VD requests, find resource
allocation with maximized global utility U

1: Input: Utility functions Ux(Rx) of user groups from
offline profiling, list of currently available resources
{R1, R2 . . . Rm} at l data centers

2: Output: Resource allocations Ri,j for VDs vi where
i 2 {1 . . . n} that will maximize global utility U

3: begin procedure
4: for each new VD vi where i 2 {1 . . . x . . . n} do
5: Refer to preference list {L1, . . . Lx, . . . Ll} and

identify the data center location Lx for
placement

6: Calculate current Ux(Rx) for the selected
desktop pool g 2 {1 . . . p} at Lx where vl,i is

being provisioned, and RSLACK
p;j ¼ Rset

p;j � Rmin
p;j

7: if Rj þ
Pp

g¼1Rslack
g;j

� �
P Rmin

i;j

�
then

8: if (Rj P 0) then /⁄ If resources are available
in the desktop pool⁄/

9: if Rj P Rmax
i;j

� �
then

10: Subtract Rmax
i;j from Rj

11: Add Rmax
i;j to Ri,j

12: else if Rj P Rmin
i;j

� �
then

13: Rj = 0
14: Add Rj to Ri,j

15: end if
16: end if

17: while dRi;j

dR <
dRc;j

dR

� �
{

18: if (Rj P 0) then /⁄Allocate resources to VD
from available resources at a location till
slopes match⁄/

19: Subtract R0 from Rj /⁄ R0 is the available
resource decrement step size⁄/

20: Add R0 to Ri,j

21: else /⁄ If there are no free resources
available in the desktop pool⁄/

22: if Rslack
g;j P R0

� �
then

23: Subtract R0 from Rg,j

24: Add R0 to Ri,j

25: end if
26: end if
27: else
28: exit notifying VDC capacity reached!
29: end if
30: end for
31: end procedure
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Herein, we explain our U-RAM iterative algorithm with

a case study featuring 3 desktop pools at a data center as
shown in Figs. 6 and 7. Fig. 6 shows overprovisioned VDs
when handled by a ‘‘fixed resource allocation model’’
(F-RAM), which is a commonly used strategy in VDCs.
Since the CSPs do not have any utility-directed knowledge
of the resource requirements, each VD when using F-RAM
is provisioned with excess (wasteful) resources that pro-
duce utility Qexcess, which in terms of user perception is
the same as Qmax. Fig. 7(a) shows how U-RAM handles
new VD requests by allocating resources that produce util-
ity Qmax when there are freely available resources. Once all
the resources have been allocated, as newer VD requests
arrive, the iterative algorithm handles the new VD requests
by allocating resources in a manner that produce utility
Qset in all VDs as shown in Fig. 7(b). Lastly, Fig. 7(c) shows
a case where it was determined in one of the U-RAM iter-
ations that resource allocation to a new VD would cause
the utility of one of the previously provisioned VDs to drop
below Qmin. Such a drop results in violation of SLA compli-
ance along timeliness and/or coding efficiency dimensions.
Hence, the new VD requests will be rejected thereafter
and the subtracted resources from the previously provi-
sioned VDs will be returned back to those VDs. Using the
corollary from Section 3, we can say that this is the opti-
mum resource allocation when using U-RAM.

3.3. Considerations for resource location determination

These considerations are used in the ‘‘User Desktop
Resource Mapper’’ in Fig. 2 to generate a resource location
preference list input for our iterative algorithm. In our
U-RAM, we separate out VD ‘provisioning’ aspects and
resource location for VD ‘placement’ aspects in VDCs since
both are equally complex NP-Hard problems. Detailed
arguments that favor separation of these two aspects can
be found in works such as [5,7].

In this paper, we emphasize the problem of ‘provision-
ing’ and assume that the ‘placement’ problem has been
solved by alternate methods, which in fact have been well
studied in literature [21,22]. The placement decisions are
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often affected by CSP-specific policies and the distributed
architectures of data center sites. Hence, there can be var-
ious reasons for choosing one data center over the other to
place VDs whose resource sizing has been determined by
U-RAM. In the following, we briefly provide heuristics for
the three most common considerations that may be used
individually or in combination with each other:

3.3.1. Load balancing
System load can vary at different data centers based on

the types of desktop pools and number of VDs they are
hosting at any given time. The U-RAM model should be
provided with intelligent inputs for VD placement such
that it facilitates load balancing in the VDC. For load
balancing, a decision can be made to place a VD in a data
center with least resources utilization. Based on this, a
preference list {L1, . . . ,Ln} can be generated as a set of feasi-
ble data centers to handle a particular VD request connec-
tion. For each connection, there should be a primary and
one or more secondary data centers listed taking into ac-
count the network path conditions between the thin-client
and the data center. If rl is the total amount of resource
available at a data center l, then load balancing heuristics
is given as:

r0l ¼ rl �
Xn

i¼1

Ri;j; 8j 2 f1;2 . . . mg; 8l 2 f1;2 . . . Lg

where max r0l
� �

gives the data center with most available
resources.

3.3.2. Energy awareness
The cost of energy can be substantially more at one data

center as compared to another. Under such situations, it
will be beneficial to allocate vl,i at a location that will min-
imize the CSP’s operating costs for a VD. These costs can be
associated with power consumption expense at the data
center. Dynamic power management schemes such as the
one proposed in [21] can be used to consolidate VDs to a
minimum number of hosts across locations that cumula-
tively lower the power consumption expense for CSPs.
hen handled by F-RAM.



Fig. 7. Example to illustrate U-RAM iterative algorithm handling of VD requests; (a) New VD requests handling with freely available resources, (b) new VD
requests handling with all available resources allocated, (c) new VD request rejected when SLA violation occurs.
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Minimize f ðCÞ ¼
Xn

i¼1

v l;iCi;v l;i 2 0;1

We note that our resource allocation problem can be
extended to include energy awareness. For this, we can
maximize the global utility U by adding a constraint in
the objective function that seeks to minimize cost of oper-
ating a VD at location l.

3.3.3. Express migration
In case of a data center failure (e.g., disaster recovery

case) or a planned downtime of a set of allocated resources,
a CSP will need to migrate VDs quickly from one data cen-
ter to another. The migration process is generally expen-
sive, time consuming and disruptive since it requires
reconstructing snapshots of system and network compo-
nents from a known point before migration such that the
imminent migration does not violate SLA requirements. A
heuristic can be used in express migration that prioritizes
VD request fulfillment during the migration process when
it is not possible to satisfy SLAs of all VD requests. A VD
request connection of a more business critical application
is thus given higher priority and should be migrated first
to a data center with more redundancy in place to prevent
further outages. There are efficient approaches such as the
one in [22] to handle such express migrations without loss
of connectivity in interactive user applications.
4. VDBench toolkit

In this section, we briefly describe the techniques used
in VDBench to benchmark system, network and human
components for deriving corresponding utility functions.
VDBench toolkit uses a novel methodology and metrics
described in Section 2.1 to benchmark thin-client based
virtual desktop environments. In the following, we first
briefly explain our methodology to perform user-load sim-
ulation based benchmarking to derive utility functions of
system components. Subsequently, we briefly explain our
methodology to perform slow-motion application interac-
tion based benchmarking to derive the corresponding util-
ity functions of network and human components. For more
detailed descriptions of VDBench toolkit development and
how it leverages and extends earlier research on slow-
motion benchmarking of thin-clients [13,14], please refer
to [8].
4.1. User load simulation based benchmarking

Fig. 8 shows the logical connection between all the lay-
ers in the VDBench toolkit. The management service is
responsible for the provisioning of desktops, launching
the load generation scripts on the VDs, monitoring their
progress, and recording results of the measurements. An
experiment begins when the VDBench management ser-
vice provisions the first VD, and then spawns a measure-
ment service on the VD, which then starts running the
load generating script in order to establish a baseline of
application response times. The load generation script
automates the execution of a sample user workflow of
application tasks as shown in Fig. 3. The workflow involves
simulating a user launching applications such as Matlab,
Excel, Internet Explorer and Media Player in his/her respec-
tive user group. Once the application is open, different
application tasks are randomly selected for execution until
all of the tasks are completed. Next, the script closes the
launched application in preparation for the next iteration.
A controllable delay to simulate user think time is placed
between each of these steps, as well as the application
tasks. An exaggerated user think time is configured in
VDBench in order to incorporate slow-motion principles
into thin-client protocol experiments.

The above process is repeated 10 times for each test so
that a steady state of resource utilization measurements
can be recorded in the measurement log. Once the initial
baseline is established, an additional VD is provisioned
by the management service and the load generation script
is run concurrently on both VDs while application response
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time measurements are collected in the measurement log.
This pattern of provisioning a new VD running the load
generation script, and collecting application response time
data is continued until the response times hit the response
time ceiling negotiated in SLAs, and subsequently the
experiment is terminated.
4.2. Slow-motion application interaction based benchmarking

To measure performance characteristics of thin-client
protocols (e.g., RDP, RGS, PCoIP), we employ the slow-
motion benchmarking technique originally developed by
[13]. This technique employs two fundamental approaches
to obtain an accurate proxy for the user-perceived perfor-
mance: (i) monitoring server-side network activity, and (ii)
using slow-motion versions of on-screen display events in
applications. Fig. 9 shows a sample packet capture of a seg-
ment of a slow-motion benchmarking session with several
on-screen display events. The session involves atomic tasks
i.e., web-page loads with different content such as a blank
page, a page containing only a text version of the US Con-
stitution, a web page with mixed graphics and text, and a
web page containing only high-resolution images. We
can distinctly notice the render times in the case of differ-
ent thin-client protocols for the screen updates of the
atomic tasks, and thus can compare their performance. Re-
call that our definition of render time is the time between
the first and last packet of network activity (characterized
by increase in packets per second) to go from-and-to an
idle state after an activity burst during an atomic task. It
is relevant to note that render time increases (i.e., thin-
client protocol shows reluctance to return to idle traffic
state) as the network health conditions degrade owing to
the monitoring and adaptation algorithms used in the
auto-scaling of the thin-client protocols.

The start and completion of screen-events are marked
in VDBench by the transmission of ‘marker packets’ shown
in Fig. 9 that are sent by the VDBench automation script at
Fig. 8. VDBench control log
the server-side. A marker packet is a UDP packet contain-
ing information on the screen-event that is being currently
displayed. The marker packets allow VDBench to synchro-
nize thin-client user events, screen updates with server-
side resource performance events. The render time can
be visualized based on the duration of the network activity
between marker packets. Over this render time interval,
the amount data transmitted is recorded in order to calcu-
late the data transmission rate or bandwidth consumption
for an atomic task. For the slow-motion benchmarking of
video playback workloads, a video is first played back at
1 frame per second (fps) and statistics of the corresponding
packet captures are analyzed. The video is then replayed at
full speed a number of times through all of the thin-client
protocols, and over various network health conditions to
obtain video quality measurements. This video quality
metric thus relates the slow-motion playback to the full
speed playback to see how many frames were dropped,
merged, or otherwise not transmitted. Before recording
all the slow-motion based measurements in the VDBench
measurement logs, each experiment session is repeated
3 times and the obtained measurements are averaged.

5. Performance results

In this section, we start by describing the testbed setup
and results for the offline utility functions characterization.
Following this, we describe the simulation methodology
and results to validate our U-RAM iterative algorithm’s
ability to online maximize VDC scalability with satisfactory
user QoE.

5.1. Offline utility functions characterization

5.1.1. Testbed setup
Fig. 10 shows the various physical components and

dataflows in our testbed setup that can be envisaged as a
data center in a VDC. The testbed hardware resources can
ic for benchmarking.



Fig. 9. Example traces to illustrate slow-motion benchmarking.

2 The balloon driver is controlled by the VMware ESXi hypervisor in
order to force the guest operating system in a provisioned VD to free up the
pages using the guest operating system’s native memory management
algorithms. The freed up pages are utilized by the hypervisor for redistri-
bution. The balloon driver reports to the guest operating system in the VD
just like a normal program that has higher and higher memory utilization.
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be proportioned to support multiple VDs, and the network
emulator allows emulation of different thin-client network
paths with different network health conditions. The hyper-
visor layer is used for infrastructure management. The
hypervisor kernel’s memory management functions are
invoked during the user-load simulations and the virtual
network switch is employed in the slow-motion applica-
tion interaction measurements. Our VDBench manage-
ment virtual appliance along with a fileserver/database,
as well as the desktop pools containing individual VDs
are provisioned on top of the hypervisor. The VDC environ-
ment is run using VMware ESXi 4.0 on top of IBM HS22 In-
tel Blade Servers in a IBM Blade Center chassis. Each blade
server has two Intel Xeon E5504 quad-core processors and
32 GB of RAM, with access to a 9 TB shared, ‘serial attached
SCSI’ (SAS). Each VD in our testbed ran a Windows XP OS
instance. The network emulation is done using NetEm,
which uses the traffic control tc command, which is part
of the iproute2 toolkit. Bandwidth limiting is done by
implementing the token-bucket filter queuing discipline
on NetEm. Traffic between the client and the server is
monitored using a span port configured on a Cisco 2950
switch. The span port sends a duplicate of all the packets
transmitted between the VD and the thin client to a
machine running Wireshark tool to capture the packet
traces and to filter out non-display protocol traffic during
offline profiling.

5.1.2. Influence of user loads
In this subsection, we show results from our testbed

that illustrate how individual applications are affected in
terms of timeliness and coding efficiency metrics with
increasing user loads. We remark that these performance
results also serve to validate the VDBench methodology
for user load simulation based benchmarking explained
earlier in Section 4.1.

The time taken to open applications clearly increases
with the increasing user load as shown in Fig. 11. Excel,
Internet Explorer, and Matlab went from 1.3 s, 2.3 s, and
10.8 s, to 5.9 s, 7.7 s, 38.5 s corresponding to 472%, 301%,
359% increases with increasing user load, respectively.
The loading of applications is heavily dependent on trans-
ferring data from the hard disks into memory. When the
memory granted to a VD is constricted due to the ‘‘balloon
driver’’ [18]2 that performs memory management within
our VMware ESXi hypervisor used in the testbed, the VD
must make room for this new application in memory. If
the VD has not exhausted its memory shares in the allocated
resources, the memory management tools and balloon dri-
ver will decrease the memory pressure on a VD, thus grant-
ing the VD more memory to use for applications. However, if
the VD has exhausted its allocated share of the memory, the
VD must invoke its own memory management tools and
start deleting old memory pages using a garbage collection
process, or swap them to its own virtual disk. These



Fig. 10. Components of VDBench and data flows.
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processes take time to complete, thus extending the applica-
tion open times as the user load increases.

The time taken for actual tasks to complete within an
application are shown in Fig. 12. The task titled ‘Matlab
Graph spin’ first involved spinning a point-cloud model of
a horse, and then pre-computing the surface visualization
of the point-cloud data. The data sets are precomputed in
order to limit CPU utilization and consume more memory.
The task initially took 34 s and grew to take 127 s, corre-
sponding to a 273% increase. This result highlights the fact
that applications such as Matlab are highly sensitive to re-
source overcommitment and need special desktop provi-
sioning considerations. The Internet Explorer tasks
Fig. 11. Application open times w
involved loading a page with different types of content.
The time taken to load a page of only an image saw the big-
gest increase starting at .75 s and grew to 2 s. The other
two page types both remained under .5 s to complete, even
under the highest system load. This increase, while statis-
tically significant, is not obviously perceivable to the user.
The task titled ‘Excel Save’ is the time taken for ‘Save As . . .’
dialog box to appear. This Excel task originally took .9 s and
later took 1.3 s only showing a 44% increase.

These results underscore the fact that applications
behave uniquely from the point of atomic and aggregate
task times under varying user loads. Hence, it is critical
to manage resource overcommitment appropriately to
ith increasing system loads.



Fig. 12. Application task times with increasing system loads.

Fig. 13. Bandwidth consumed by text page under network emulation.
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avoid wastage of resources by overprovisioning, while not
adversely impacting user QoE.

5.1.3. Influence of network health conditions
In this subsection, we show results from our testbed

that illustrate how individual applications are affected in
terms of timeliness and coding efficiency metrics with
degrading network health conditions. We remark that these
performance results also serve to validate the VDBench
methodology for slow-motion application interaction
based benchmarking explained earlier in Section 4.2.

Figs. 13 and 14 show results from our slow-motion
benchmarking testing of RDP, RGS, and PCoIP under a com-
bination of both a range of network latencies (0 ms, 50 ms,
and 200 ms) as well as no packet loss and a relatively high
packet loss of 3%. These network health conditions were
selected because they provide insights into how these
thin-client protocols may behave on actual LAN, WAN
and wireless last-mile connections. The ratio of the data
transmitted and time taken for each screen update are
used to calculate the ‘data transmission rate’ or bandwidth
consumed. We can see that in general, there was a reduc-
tion in bandwidth consumed for each of the protocols
when comparing low-latency, no loss with low-latency,
and high loss network health conditions. This is not sur-
prising as this likely indicates a throttling of bandwidth
consumption as packet loss increased. RDP transports the
‘text only’ web page with very minimal data transmitted
and thus has a higher coding efficiency for text. Both RDP
and RGS maintain a relatively constant amount of data
transmitted across increased latency and loss. The
UDP-based PCoIP also in most cases exhibited a significant
increase in the amount of data transmitted as latency and
packet loss was increased. However, the user experience
subjectively was found to be acceptable for PCoIP even at
relatively high packet loss rates of 3%. While the TCP-based
protocols (RDP and RGS) were affected by increased
latency and loss, the UDP-based PCoIP was largely unaf-
fected by increases in latency.

Fig. 15 shows the video performance of PCoIP, RDP, and
RGS under a variety of network health conditions. PCoIP
under no loss conditions showed relatively stable perfor-
mance with increased latency. However, under high loss
conditions, PCoIP suffered a severe drop in video quality.
This behavior is due to the display protocol being based
on UDP, with recovery from loss being complex. While
RDP performed the best under idealized conditions, RDP
suffered dramatically under either loss or high latency



Fig. 14. Bandwidth consumed by image page under network emulation.

Fig. 15. Video Quality comparison under network emulation.
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conditions. RGS was not as dramatically affected as RDP by
increased latency. However, under high loss conditions,
RGS had significantly reduced video quality.

These results underscore the fact that thin-client proto-
cols are designed differently to display specific type of con-
tent. Consequently, guesswork of thin-client configuration
in VD sessions without considering application context and
network health conditions between user and data center
network paths, can greatly impact user QoE.

5.1.4. Utility surfaces
In this subsection, we leverage the performance results

of individual applications under increasing user loads and
degrading network health conditions to construct utility
functions of user groups. As concluded in Section 3.1, the
U-RAM applies Kuhn–Tucker optimality conditions for
‘‘desktop pools’’ that comprise of subsets of applications
pertaining to a user group to maximize global utility U.

For the sake of argument, we consider three user
groups: (i) Engineering Site, (ii) Campus Computer Lab,
and (iii) Distance Learning Site. We assume that the Engi-
neering Site users are connected to a VDC via enterprise
network paths with low latency and low loss, and routinely
use Matlab, Internet Explorer and Excel applications. Also,
we assume Campus Computer Lab users are novice
students connecting from computing sites to a VDC via



Fig. 16. Utility curve of Campus Computer Lab user group.

Fig. 17. Utility curve of Engineering Site user group.

Fig. 18. Utility curve of Distance Learning user group.

Table I
SLA specifications used in utility surfaces.

SLA metric Applications Max. demand Threshold

Open time All Memory 20% increase
Atomic task time Matlab CPU 30% increase
Video quality Media player Network 15% decrease
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community network paths with high latency and low loss,
and routinely use Internet Explorer and Excel applications.
Further, we assume Distance Learning Site users connect-
ing to a VDC via residential network paths with high
latency and high loss, and routinely use Media Player
(e.g., to watch classroom lecture videos), Internet Explorer
and Excel applications.

Figs. 16–18 show the surfaces of the utility functions of
the three user groups, respectively. To create the surface
for a user group, we combine the individual application
profiles of that user group and average the resources
needed to obtain utility surfaces of Qmin and Qmax for the
corresponding network health characteristics. The operat-
ing points in the space between the Qmin and Qmax surfaces
of a user group represent feasible VD configurations in a
desktop pool i.e., VD configurations that are successfully
provisioned to meet SLA requirements. Any operating
point that lies above the Qmax surface represents a VD con-
figuration that is overprovisioned. Similarly, any operating
point that lies below the Qmin surface represents a VD con-
figuration that is underprovisioned, which violates SLA
requirements. Table I shows the SLA specifications that
we chose to generate the utility functions of the three user
groups. As discussed in Section 2.1, determining tolerance
thresholds of timeliness and coding efficiency metrics for
actual users need to be specified in SLAs after extensive
subjective testing with human subject experimentation
[20]. Nevertheless, the SLA specifications in Table I have
been chosen based on our intuition of what general users
perceive as an interactive response time ‘lag’ or a degraded
data transmission ‘throughput’. Further, we remark that
choosing other SLA specifications does not change the
validity of the results presented in this paper.
5.2. U-RAM iterative algorithm validation

In this section, we use the utility functions that were
generated in the previous section using the VDBench tool-
kit in a simulation to show how the cloud scalability is
increased using U-RAM in terms of ‘VDs per core’ and ‘user
connections quantity’.

The simulation setup is as follows: we simulate a VDC
with several data center sites with each data center site
defined to mimic the testbed (see Fig. 10) resources that
were used to create the utility functions. It is relevant to
note that if the system and network resources are different
from the ones we used in our testbed, CSPs would need to
re-run our VDBench scripts to create utility functions for
Qmin, Qmax, and Qexcess that are pertinent to their unique
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setups. Hence, each site had 64 GB of RAM, a 100 Mbps
duplex network bandwidth interface, and a scalable num-
ber of CPU cores that are each at 2 GHz. In the simulation,
we varied the number of data center sites in the cloud, the
number of CPU cores at each site, and the array of incom-
ing VD request connection types. Each VD request connec-
tion was identified as belonging to one of user groups (i.e.,
Campus Computer Lab, Engineering Site, or Distance Learn-
ing Site) with varying resource requirements as defined by
the respective utility functions. In order to account for the
fact that thin-client protocols are affected by the network
latency or physical distance between the end-user site
and the cloud, we assumed that each VD request site was
geo-located in close proximity to 2 data centers that had
acceptable intermediate network latency. Hence, each con-
nection was assigned a primary and secondary site prefer-
ence by our simulation based on randomly selecting one of
the considerations discussed in Section 3.3 that influence
mapping of user desktop requests to distributed VDs. If
U-RAM determined that neither the primary nor the sec-
ondary site had enough resources to successfully provision
and place a VD connection request, the VD connection
request was rejected.

For collecting the ‘VDs per core’ performance measure-
ments in our simulation, we scaled up the number of CPU
cores at each data center while all other resources re-
mained constant. This metric highlights the inflection
point at which adding more CPU cores to a data center
no longer increases the capacity of that particular data cen-
ter since one of the other resources (i.e., memory or net-
work bandwidth) have been exhausted, and are the
limiting factors. For deriving the ‘user connections quan-
tity’, we calculate the total number of incoming VD request
connections that have been handled by a VDC with l data
centers after attaining the inflection point in the case of
‘VDs per core’ performance measurements. To collect each
data point of these 2 metrics, we average the result from
200 runs in the simulation.

We compare cloud scalability performance of U-RAM
with 4 different resource allocation models:

� Fixed Resource Allocation Model (F-RAM): in this scheme,
each VD is overprovisoned and is given fixed resources
that produce utility in Qexcess range. This is the most
commonly used resource allocation method where the
CSP does not have any actionable information about
the resource requirements of VDs. The natural tendency
is thus to provision fixed (identical) amount of overpro-
visioned resources to each VD regardless of its expected
workload.
� Network-aware Resource Allocation Model (N-RAM): in

this scheme, the CSP is aware of the Qmax required for
network resources, but overprovisions Qexcess for system
(RAM and CPU) resources due to lack of system-
awareness information. The network-awareness can be
obtained by a CSP for e.g., by using a thin-client protocol
specification recommended as a rule-of-thumb by an
application vendor.
� System-aware Resource Allocation Model (S-RAM): this

scheme is the opposite of N-RAM in that Qmax is provi-
sioned for the system resources and Qexcess is provisioned
for the network resources. The system-awareness can be
obtained by a CSP for e.g., by using CPU speed and mem-
ory size specifications recommended as a rule-of-thumb
by an application vendor.
� Greedy Resource Allocation Model (G-RAM): in this

scheme, we assume that the CSP is aware of the Qmax

requirement in terms of both the system as well as
the network resources based purely upon rule-
of-thumb information. Consequently, this scheme
greedily (a.k.a eagerly) provisions fixed amount of sys-
tem and network resources to produce utility in Qmax

range. Hence, it can be treated as a variant of our
U-RAM without the adaptive resource sizing based on
utility functions.
� Our proposed Utility-Directed Resource Allocation Model

(U-RAM): Our proposed scheme uses a dynamic
resource allocation strategy and operates a VD with
utility in Qmax range while there are abundant resources
available. When it is no longer possible for each VD to
have Qmax resources, the VD resources are re-sized to
a smaller value Qset. This shrinking continues up to a
Qmin value that corresponds to the least quality level
acceptable to a user as defined in the SLAs.

5.2.1. VDs per core density results
Referring to Fig. 19 that shows the VDs handled suc-

cessfully per data center with increasing number of cores,
we can see that U-RAM outperforms the other schemes
by supporting more VDs per core density. When VDs
are provisioned using Qmin resources in the U-RAM
scheme, the number of VDs supported at each data center
increases with the number of cores per data center up to
112 VDs, which inherently requires 68 cores. At this
inflection point, the memory at each data center becomes
the bottleneck. When provisioning VDs with Qmax

resources using the
G-RAM scheme, the VDs per core density at each data
center increases to 44 VDs requiring 32 cores. At this
inflection point, the density was limited by the network
bandwidth available at each data center. The N-RAM
scheme was able to achieve as much density as G-RAM,
and VDs were provisioned with Qmin network resources.
Owing to this,
N-RAM exhausted the memory at each data center with
spare capacity in the number of cores, which is useless
to provision any VDs due to the memory limitation. The
difference in the S-RAM and N-RAM scheme results high-
lights the importance of having awareness of both the
system and network resource requirements in resource
allocation schemes. Note that S-RAM performed slightly
better than F-RAM, and initially performed as good as
G-RAM but reached its inflection point due to network
limitation. VDs in the F-RAM scheme were provisioned
with Qexcess resources, and hence the network bandwidth
at each data center became exhausted once 24 cores were
provided.

5.2.2. User connections quantity results
Referring to Fig. 20 that shows the user connections

handled successfully with increasing number of data cen-
ters, we can see that U-RAM outperforms the other



Fig. 19. Comparison of VDs per core density results.
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schemes by supporting greater number of user connec-
tions. Note that the initial values and slopes shown are
determined by the number of cores that are being used.
The shown results are for the setting of 68 cores per site,
which we observed from Fig. 19 is the number of cores
needed to get maximum VD density per data center. Since
U-RAM allows each data center to support a maximum of
112 VDs, a VDC consisting of 3 data centers could success-
fully support just over 336 user connections. Thus, in com-
parison with other schemes, U-RAM scales better as the
number of data centers increase owing to the fact that
the VD density per data center attainable is higher at every
step.
6. Related work

Works such as [2–5] propose approaches for server-side
resource allocation based on utility models and adaptation
schemes to cope with system performance events and
meeting SLA requirements. In [2], service utilization pat-
terns are detected and a fuzzy controller is used to allocate
server-side resources based on SLAs and system events
such as service migration/replication. An adaptive resource
allocation system based on a black-box control system
Fig. 20. Comparison of user connections quantity results.
model is proposed in [3] to handle applications with mul-
ti-tier quality SLAs without high resource utilization in
data centers. Authors in [4] address the multi-tier applica-
tion quality problem using a flexible queuing model and
develop resource provisioning schemes based on per-tier
utility predictions at small and large timescales. A more
general resource allocation framework is proposed in [5]
that aims to maximize a global utility function, which inte-
grates SLA fulfillment and operating costs. The resource
allocation problem is formulated as a constraint satisfac-
tion problem and is deemed as an NP-Hard knapsack prob-
lem instance. Alternately, [6] formulates the general
utility-based resource allocation problem as an integer
program, again an NP-Hard problem, and attempts to solve
the problem with a commercial solver on random problem
cases. We remark that all of the above works target server-
virtualization scenarios, where user workloads can be
modeled as transactions that have predictable resource
consumption characteristics.

Two works that are closely related to our specific re-
source allocation problem involving desktop virtualization
are [9,10]. Both these works provide conceptual frame-
works for leveraging measurements from performance
benchmarking tools for VD resource sizing and placement.
In [9], the resource allocation is entirely done by an online
algorithm that is based on profiling active and idle time
periods of desktop activity. Whereas in [10], the resource
allocation on a virtual desktop is entirely done by an offline
algorithm that is based on resource predictions from pro-
filing user workloads on traditional desktops. To the best
of our knowledge, our work is the first to propose a con-
ceptual framework, an utility-driven model (U-RAM), as
well as results from an actual implementation (i.e.,
VDBench results) to incorporate offline benchmarking to
guide online resource allocation within VDCs. Further, we
address meeting multi-tier application quality SLAs based
on profiling applications within user groups, and corre-
spondingly narrow the resource allocation problem to
optimizing global utility within user desktop pools.

Our proposed U-RAM framework has similarities with
resource allocation models in works such as [11,12]. In
[11], an analytical model was developed for the RT-phone
multimedia application considering end-to-end delay as
the quality dimension with CPU as the resource to be allo-
cated. In [12], a more extensive analytical model was
developed to solve a resource allocation problem with
multi-dimensions (i.e., track error, target drop probability,
reliability) and multi-resources (i.e., radar bandwidth,
short-term power, long-term power, CPU, memory) in
radar tracking systems. In our U-RAM for VDCs, the
resource allocation involves three resources (i.e., CPU,
memory and network bandwidth) and two quality dimen-
sions (i.e., timeliness, coding efficiency).

There have been earlier studies and toolkit develop-
ments related to performance measurement in thin-client
systems. In [13], the slow-motion benchmarking technique
was first developed to measure user QoE of web and video
applications on thin-clients. Works such as [14] extended
the use of slow-motion benchmarking for analyzing differ-
ent design choices for thin-client implementations on
wide-area networks. A novel video quality metric to
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compare performance of TCP and UDP based thin-clients
was also developed in [14]. There have been user-workload
scripting toolkits such as ‘‘Login VSI’’ [15] that automate
performance measurements of application events (e.g.,
application open time) at the server-side in a controllable
and repeatable manner. They are mainly suited for deter-
mining resource allocations based on server-side process-
ing. In contrast, thin-client performance benchmarking
toolkits such as [16,17] focus on recording and playback
of keyboard and mouse events on the client-side, and do
not consider synchronization with server-side events and
network health measurements. Our VDBench toolkit lever-
ages the earlier slow-motion benchmarking technique and
user-workload scripting principles, and extends them with
novel metrics (e.g., ‘render time’, ‘bandwidth consumed’)
and introduces the concept of ‘marker packets’ to synchro-
nize thin-client user events with server-side resource per-
formance events.
7. Conclusion and future work

Our key contributions of this paper can be summarized
as follows:

� We develop U-RAM that uses offline benchmarking
based utility functions of system, network and human
components to dynamically (i.e., online) create and place
virtual desktops in resource pools at distributed data cen-
ters, all while optimizing resource allocations along time-
liness and coding efficiency quailty dimensions.
� We propose an iterative algorithm for U-RAM (an NP-

Hard problem) to optimize resource allocation with fast
convergence based on combined utility functions.

Our work is unique as it studies the impact of increas-
ingly constrained memory and network health conditions
on the performance of various application tasks in a virtual
desktop cloud environment. Further, our work is the first
to propose a conceptual framework, an utility-driven mod-
el (U-RAM), as well as results from an actual implementa-
tion (i.e., VDBench results) to incorporate offline
benchmarking to guide online resource allocation within
VDCs. Our results from actual implementation show that
both network-awareness (i.e., utility functions of thin-cli-
ent protocols) as well as system-awareness (i.e., CPU and
memory resource utility functions) are critical to improve
VDC scalability. Also, optimization techniques for resource
allocation (e.g., those that involve Kuhn–Tucker optimality
conditions) when applied in VDCs need to consider crea-
tion of desktop pools based on utility functions of user
groups.

By combining utility functions of both system and net-
work components in U-RAM, we were able to optimally
circumscribe the kind and amount of resources required
to deliver adequate performance (i.e., satisfied user experi-
ence). This inturn significantly improved VDC scalability in
terms of ‘VDs per core density’, and ‘user connections
quantity’ in comparison with existing resource allocation
methods. Using our results, CSPs looking to deploy thin-
clients based VDCs will be able to greatly reduce the
amount of costly guesswork and over-provisioning com-
monly encountered in this domain.

Future work for this paper could include leveraging
context awareness of user tasks within VDCs in order to
cache atomic tasks of highly interactive applications on
thin-clients. Using such awareness, network round trips
to the VDC can be avoided for user actions such as menu
unfolding, and text-typing. Integration of the awareness
will need to be non-intrusive on thin-client resources dur-
ing context monitoring, and could leverage concepts such
as application-specific ‘‘latency hiding’’ and ‘‘caching’’
[23] to deliver a comparable user experience to that of a
traditional desktop.
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