Defragmentation of Resources in Virtual Desktop
Clouds for Cost-Aware Utility-Optimal Allocation

Mukundan Sridharan, Prasad Calyam, Aishwarya Venkataraman, Alex Berryman

Ohio Supercomputer Center/OARnet, The Ohio State University, USA; Email: {sridhara, pcalyam, venkatar, berryman} @oar.net

Abstract—Cloud Service Providers (CSPs) make virtual desk-
top cloud (VDC) resource provisioning decisions within desktop
pools based on user groups and their application profiles. Such
provisioning is aimed to satisfy acceptable user quality of expe-
rience (QoE) levels and is coupled with subsequent placement of
VDs across distributed data centers. The placement decisions are
influenced by session latency, load balancing and operation cost
constraints. In this paper, we identify the resource fragmentation
problem that occurs when placement is done opportunistically
to minimize provisioning time and deliver satisfactory user QoE.
To solve this problem, which inherently is an NP-Hard problem,
we propose a defragmentation scheme that has fast convergence
time and has three levels of complexity: (i) “utility fair provi-
sioning” (UFP) to optimize resource provisioning within a data
center - to achieve relative fairness between desktop pools, (ii)
“static migration-free utility optimal placement and provisioning”
(MUPP) to optimize resource provisioning between multiple data
centers - to improve performance, and (iii) ‘“dynamic global
utility optimal placement and provisioning” (GUPP) to optimize
resource provisioning using cost-aware and utility-maximal VD
re-allocations and migrations - to increase scalability. We evaluate
our defragmentation scheme against ‘least latency’, ‘least load’,
and ‘least cost’ schemes using a novel “VDC-Sim” simulator
that we have developed in this study. Our simulations leverage
profiles of user groups and their applications within desktop
pools, obtained from a real VDC testbed. Our simulation results
demonstrate that defragmentation is an important optimization
step that can enable CSPs to achieve fairness, substantially
improve user QoE and increase VDC scalability.

Keywords-Virtual Desktop Clouds, Resource Defragmentation,
Optimal Resource Allocation, Greedy Heuristic

I. INTRODUCTION

Common user applications such as email, photos, videos
and file storage are already being supported at Internet-scale
by ‘cloud’ platforms (e.g., Amazon S3, Google Mail, and Mi-
crosoft Azure). Even academia is increasingly adopting cloud
infrastructures and related research themes (e.g., NSF CIuE,
DOE Magellan) to support desktop delivery for various science
communities. The next frontier for these user communities will
be to transition ‘traditional desktops’ that have dedicated hard-
ware and software installations into ‘virtual desktop clouds’
(VDCs) that are accessible via thin-clients. The drivers for this
transition are obvious and include: (i) desktop support in terms
of operating system, application and security upgrades will be
easier to manage centrally, (ii) the number of underutilized
distributed desktops unnecessarily consuming power will be
reduced, (iii) mobile users will have wider access to their
applications and data, and (iv) data security will be improved
because confidential user data does not physically reside on
thin-clients. VDC platform providers are beginning to host
virtual desktops by augmenting domain-specific community

This material is based upon work supported by the National Science
Foundation under award number CNS-1050225, VMware, and Dell. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Thin-clients

\ / /ﬁ
\ ! '
\ / E;/
& @7
4
[™ A \
| / Internet ™, \
| A \
| AR 3 \\
| / P
|/ ~_ '\ \ Network Path
VD Requests | “_ '\ \Measurements
[/ A
Data Center v v K FYR]
locationL; —u | User Desktop Measurement
Resource Mapper Toolkit il
1
[
vo |[vo Data Center " " l !
- Location L, Source and !
Hypervisor [o] Module User Group Profiles ;
Physical vo][vo] |
Hardware - Unified Resource Broker |
. vo [vp |
1

Hypervisor | —_ _ __ __

Physical
Hardware

Fig. 1. Components of Virtual Desktop Cloud Infrastructure

clouds (e.g., education clouds), and are customizing desktops
for these communities through pay-as-you-go services such
as: Desktop-as-a-Service (DaaS), Infrastructure-as-a-Service
(IaaS), and Software-as-a-Service (SaaS).

Figure 1 shows the various system and network components
in a typical VDC, comprising of two or more inter-connected
data centers that handle thin-client connections from several
user sites on the Internet. At each data center, a hypervisor
framework (e.g., VMware ESXi, OpenVZ, Xen) is used to cre-
ate virtual desktops (VDs) that host popular applications (e.g.,
Excel, Internet Explorer, Media Player) as well as advanced
scientific computing applications (e.g., Matlab, Moldflow). A
Unified Resource Broker (URB) receives the VD requests and
handles them by making decisions regarding the placement
(i.e., resource mapping) and provisioning (i.e., resource sizing)
of resources.

The objective of the URB is to ensure user QoE is satisfied
while maintaining scalability of the VDC in terms of the over-
all number of VDs handled. Obviously, increased scalability
leads to benefits from economies of scale such as increased
revenue for the CSP, and potentially lower cost per VD. To
perform provisioning of VDs, the VDC relies on information
regarding user groups and their application profiles that are
obtained via offline profiling using measurement toolkits such
as VDBench [2]. The profiles allow ‘desktop pooling’ corre-
sponding to the resource requirements of applications in differ-
ent user groups. They also indicate the amount of minimum-
and-maximum resources to be provisioned to satisfy Service
Level Agreements (SLAs) between CSP and users; an SLA for
instance can specify the ‘least tolerable’ interaction response
times (with minimum resource amount) when accessing a
document editor via a thin-client, and the corresponding ‘best’
interaction response time (with maximum resource amount

3. Dynamic Global Utility Optimal
Placement and Provisioning (GUPP)

2. Static Migration Free Utility Optimal
Placement and Provisioning (WUPP)

1. Utility Fair Provisioning (UFP) O

(within Single Data Center)

(between Multiple Data Centers)

(between Multiple Data Centers)

Fig. 2. Defragmentation Scheme Complexity Layers

beyond which user does not perceive any more improved
QoE). Although Figure 1 shows the URB as a single entity,
its implementation could infact be a set of distributed entities
via secure state-sharing protocols commonly used in content-
delivery networks.

For every VD request to be handled in the VDC, the
URB has to maintain “fairness” i.e., it has to maintain the
relatively same utility ! between desktop pools to avoid unfair
overprovisioning of any particular user group based on its
application profile. In addition, given the fact that VD resource
reallocations and VD migrations are expensive operations
in a VDC, the URB may not always able to place a VD
in a ‘globally optimal’ manner. In such cases, the URB
opportunistically assigns a new VD request to a data center
that has atleast the minimum resources for SLA compliance,
and that satisfies the thin-client session latency, load balancing
and operation cost constraints. Over time, such opportunistic
placements by the URB results in a ‘resource fragmentation’
problem that is analogous to the ‘disk fragmentation’ problem
that limits performance in personal computers. In the VDC
context, the resource fragmentation affects both user QoE
and scalability as can be seen in the following two example
cases: i) users may be connected to VDs that are allocated
only the minimum resources when additional resources are
available at a different data center; (ii) VDs may be rejected
if the only data center that satisfies the placement constraints
is overloaded and there are other lightly loaded data centers
that can handle the already placed VDs in the overloaded
data center. In both these cases, ‘defragmentation’ using a
‘global’ optimization involving VD resource reallocations and
VD migrations can improve user QoE and increase scalability
respectively. However, it is important to note that the global
optimization needs to be triggered at time points where, the
net benefit from improved user QoE and increased scalability
exceed the cost of ‘global’ optimization that involves VD
resource reallocations and VD migrations.

In this paper, we provide an optimal solution for the above
resource fragmentation problem, which inherently is an NP-
Hard problem, by developing a defragmentation scheme that
has fast convergence time and has three levels of complexity
shown in Figure 2. The UFP maintains relatively same utility
between desktop pools with different application profiles of
user groups. The MUPP is an online algorithm that op-
portunistically maximizes the utility between multiple data
centers and allows quick provisioning times for VDs upon
new user request arrivals. In contrast, the GUPP is an offline
algorithm that globally optimizes the utility between multiple

'A utility function indicates how much of application performance can be
increased with larger resource allocation. Beyond a certain point, application
utility saturates and any additional resource allocation fails to further increase
application performance.

data centers by minimizing ‘utility loss’, when the ‘net benefit’
from improved user QoE and increased scalability exceeds
the operational cost of ‘global’ optimization. We evaluate
our defragmentation scheme against ‘least latency’, ‘least
load’, and ‘least cost’ schemes using a novel “VDC-Sim”
simulator that we have developed in this study. The simulator
enables visual analysis of VD placements across distributed
data centers and allows analysis of the achieved “utility loss”
minimization and “net benefit” maximization levels for various
solution configurations in fragmented VDCs. Our simulations
leverage profiles of user groups and their applications obtained
from a real VDC testbed that we developed in our recent prior
study [3]. Our simulation results demonstrate that defragmen-
tation is an important optimization step that can enable CSPs
to substantially improve user QoE and VDC scalability.

The remainder of this paper is organized as follows: In
Section II, we describe prior literature related to our work. In
Section III, we formally describe the defragmentation solution
objective. In Section IV, we describe our UFP and MUPP
algorithms. In Section V, we describe our GUPP algorithm.
In Section VI, we first present our simulation setup in VDC-
Sim and then present validation results of our algorithms.
Section VII concludes the paper.

II. RELATED WORK

Resource fragmentation problems in storage and memory
systems have been extensively studied in prior literature. Given
that the basic problem is combinatorial in nature, earlier works
have developed heuristics that iteratively decrease the number
of fragments. We extend such an approach to the resource frag-
mentation problem in VDCs. The work in [6] is closely related
to our work; the authors illustrate the importance of match-
ing homogeneous workloads of high-performance computing
tasks, while placing them at distributed server locations. They
claim that the problem solution is similar to that in a tetris
game, where objects of different shapes need to be packed in
a box. A careless packing of workloads on servers will create
huge capacity holes, resulting in sub-optimal resource usage—
which they call the fetris effect. In comparison, our workloads
are heterogeneous i.e., VDs have varying application profiles
and the provisioning as well as placement constraints are more
involved due to the nature of thin-client protocols that are
sensitive to latency, loss and available bandwidth [2]. Further,
we actually solve the fragmentation problem using optimiza-
tion techniques, whereas authors in [6] merely illuminate the
problem. In [5], the authors recommend a unified broker
architecture for resource allocations similar to our approach.
They also describe how unified resource brokers can perform
functions such as performance isolation, live migration and
suspend/resume capabilities.

In terms of comparison of optimization algorithms in prior
literature for related problems, authors in [7] makes resource
allocations based on the network topology and application
requirements for data-intensive workloads using genetic search
algorithms. In [4], the authors develop a fair resource alloca-
tion scheme, which is round-robin across data centers based
on resource dominance levels. In [11], the authors consider
the problem of SLA-based resource allocation for cloud data
centers. While they consider placement directed by utility of
applications, they do not factor in the cost of migration in
the optimization algorithms. In our previous work on utility-
directed resource allocation model (U-RAM) [3], we devel-
oped an iterative algorithm that addresses only resource provi-
sioning issues in VDCs based on the theoretical underpinnings

VDs at Data Center L,
—
o

i gl vdsp |]-- vy, o vdsp |]--

vy Vot Ivdu _ vy [Tyay | Y [|-~
v | sy | vy |1 vi; | vy | v |-~

4: VD request arrival
Unified Resource Broker |/ VD Placement in L,

VDs at Data Center L,
e —

Unified Resource Broker |

/
vy [T) . v [0y
1 Wil m VD o IR
X vy [Tdin | Y |-~ rejected 7 [Td,y]]| Y2
1 VD request arrival X z
A3l | vy | v [Voo | vdyy | v []--
- 1,: VD request rejected

———— S~
VDs at Data Center L, VDs at Data Center L,

(a) VD Request (b) VD Departure
VDs at Data Center L, VDs at Data Center L,
P e———
v vdso []-- vd, !vdn --
15 VD request arrival N
vy [gy | v | |-~ P im v | |--
Unified Resource Broker |
Vo, i i]|. [Urified Resource Broker | PEPPU NI
Unified Broker /
| ts: vd;s migration to L, . £:: VD placement in L,
vD \for improved performance —\ due to i ility from vd,s mi
swapped \
out X \ [) EEARY
ity vy vdyy
vi; v NTha,) Y | |-~ g 22N R |
B vy | vy | v []-- Wiy | v | vl [1--
=" .
VDs at Data Center L, VDs at Data Center L,
(c) VD Departure and Migration (d) VD Request

Fig. 3. Resource fragmentation in VDC

in works such as [8], [9]. In this work, we extend our earlier
U-RAM work and propose greedy heuristics that addresses
both placement and provisioning of VDs within VDCs. The
novelty is in the fact that complexity of the algorithms in this
paper increase in steps to improve fairness, performance and
scalability in VDCs and also take into consideration a cost-
benefit analysis to determine reallocations and migrations of
VDs between multiple data centers.

III. RESOURCE FRAGMENTATION PROBLEM IN VDCs
A. Problem Overview

Given the fact that CSPs manage VDs at multiple data center
sites, they need to consider the following factors as new VD
requests arrive: (a) session latency, (b) operation cost, and
(c) resource availability, all while delivering satisfactory user-
perceived QoE. Based up on session latency and operation
cost factors, VDs are placed at a location that will yield
maximum benefit under the constraint of resource availability.
Figure 3(a) shows a scenario when a VD request best suited
for maximizing QoE at Location L is allocated to Location
L1 due resource unavailability at L. This creates a situation
where the placement is sub-optimal. Also, Figure 3(b) shows
a scenario where a VD request is rejected due to lack of
resources at both L; and L. Figure 3(c) shows a scenario
where one of the VDs already placed at Lo departs, creating
a resource ‘hole’ or ‘fragment’. Several fragments created by
such departures lead to the resource fragmentation problem
that affects VDC scalability and user QoE. In the above exam-
ple scenario, we solve this problem by migrating v;5 that was
originally placed at L;. In Figure 3(d), since vd;, migrated
to Lo, defragmented resources are now available at L; to
accept the earlier rejected request vds;. The four scenarios
together illustrate the resource fragmentation problem and our
solution that involves migrating VDs to new locations in order
to optimize the system utility. We remark that migration of a
VD is an expensive process, and we consider the cost and
benefits before making migration decisions in our solution.

The solution to the above broad problem is the goal of
this paper. In general, this is a combinatorial problem where
optimal allocation depends on the order of the VD arrival,
and is a directed instance of the Generalized Assignment
Problem [10]. GAP problems typically require complex solu-
tions, and even generic or greedy solutions are computationally
intensive. Hence, we are interested in finding ‘near-optimal’

solutions that are practical and quick to implement, rather than
an optimal computationally intensive solution.

B. Utility Definition

For a VD wd; that is allocated resources R' =
{ri1, ri 2, ..., riy} at data center L;, the utility generated is
U!, the composite quality generated is Qc; and the network
latency of the VD client to data center L; is vl;. Uil is a
function of the composite quality (Jc; and the latency vl;; of
the VD to the data center L; i.e., Ul = Qc; * f(vly); Qc; is a
weighted function of the qualities generated along D quality
dimensions and can be given as - Qc¢; = 25:1 Wid * qq.

C. Defragmentation Solution Objective

Formally, the defragmentation i.e., solution objective can
be stated as follows: Given a list of N VDs, L data centers
each of which has J type of resources, where Ri,.., Ry is
the total resource of each type, given a provisioning PR, and
a placement Pj for the VDs and the total system utility Uy,
find an optimal provisioning PR, and placement F,, such that
“net benefit” generated is maximum. Net benefit is defined as
the difference between the gain in total system utility and the
cost involved in migrating VD from the current placement and
provisioning configuration to a new configuration. The maxi-
mization of net benefit is subject to: (i) resource constraints
i.e., at any location, total resource of any type allocated to
VDs does not exceed the resource capacity at that location, (ii)
quality constraints i.e., every VD request is ensured a quality
that at least satisfies the SLA, and (iii) fairness constraints
i.e., the composite qualities of all user groups at any location
are equal.

Given :
P;C, PRk and U;.C
Maximize :
NetBenefity, = (Ux — U,) — MClp, (1)
Subject to :
> rig <R, Y {0
{ivieSi}
Quality Constraint : Qc™™ < Qc;
Fairness Constraint : ¥ {i,k} Qc; = Qcy,

Resource Constraint :

D. Defragmentation Solution Methodology

The defragmentation solution characteristics is combinato-
rial in nature and an exhaustive search approach would be in-
tractable. In order to solve the resource fragmentation problem
in an efficient and practical way, we develop a defragmentation
scheme that has fast convergence time and has three levels of
complexity shown in Figure 2: (i) “utility fair provisioning”
(UFP) to optimize resource provisioning within a data center -
to achieve relative fairness between desktop pools, (ii) “static
migration-free utility optimal placement and provisioning”
(MUPP) algorithm to optimize resource provisioning between
multiple data centers without affecting previous placements
- to improve performance, and (iii) “dynamic global utility
optimal placement and provisioning” (GUPP) algorithm to
optimize resource provisioning using cost-aware and utility-
maximal VD re-allocations and migrations - to increase scal-
ability.

IV. MIGRATION-FREE UTILITY-OPTIMAL PLACEMENT &
PROVISIONING ALGORITHM

We first explain how we make utility-optimal fair Resource
provisioning (UFP) at a single data center, such that - given
a set of VDs to be placed at the data center, we make
optimal resource provisioning to achieve fairness. Next, we
explain how we use the UFP in the MUPP algorithm to
make optimal placement and provisioning across multiple data
centers without reallocations and migrations. In MUPP, we
focus on finding an optimal placement for the new arriving
VDs, without disturbing the locations of any of the previously
placed VDs in the VDC.

A. Utility-optimal Fair resource Provisioning Algorithm
(UFP) for a Single Data Center

The UFP algorithm consists of: i) “offline” utility function
characterization for ‘user groups’, and ii) “online” optimal and
fair resource provisioning. We group VDs of similar usage
profiles into distinct ‘user groups’ and provision the same
amount of resources to all VDs in a user group. To col-
lect measurements for characterizing the utility functions, we
leverage a virtual desktop performance benchmarking toolkit
viz., “VDBench” that we developed in [2]. The VDBench
uses a novel methodology that allows correlation of thin-client
user events with server-side resource performance events by
virtue of ‘marker packets’. In this paper, we use our VDBench
toolkit to obtain user application and user group profiles in an
offline manner, which can then be leveraged online to optimize
resource mapping and sizing in a VDC under real user loads.

UFP handles resource allocation fairness based on user’s
perceived QoE considerations. More specifically, resources
are allocated such that all VDs in a data center have the
same relative user QoE. Maintaining same quality level across
user groups may not necessarily require equal allocation of
resources, as applications in one user group may require
more/less resources than in the other user groups. We define
a “fairness index” metric that quantifies the quality difference
between two VDs at a data center site. If d(x, y) defines
difference in quality level of VD z and y and & # 1y, then -

f=1—=Max(5(i,j)) Vijandi#j ()
Final qualities of

a[l VDs
‘ln /

Iteration
I,

Initial qualities of all VDs

G\\anlily of new VD
increases with
each iteration

Normalized
Quality

Initial quality of new
vD

Resources

Various stages in the UFP algorithm

Fig. 4. Tllustration of Iterative UFP algorithm

UFP aims at maximizing utility which is modeled upon
user QoE. The utility-optimal resource provision problem
presented in this paper is an instance of Bounded Knap-Sack
problem, and is known to be NP-hard in number of VDs.
However, since we profiled the VDs in to a smaller set of
‘user groups’, our resource provisioning is simplified, and the
running time decreases significantly. Using this observation,
we now describe the design an iterative algorithm that has fast
convergence: When a new VD arrives, we allocate resources
to the new VD from the resources already allocated to the VDs

of the same user group, which decreases the user group’s Re:
value and decreases its quality represented as QJcy. Next, we
iteratively adjust the resources of the user groups by removing
resources from the user group with maximum quality and
adding it to the user group with minimum quality, until all of
them have the same quality. By adjusting the dr, the amount
of resource exchanged between the maximum and minimum
quality user groups, based on the difference in quality levels,
we make the algorithm achieve fast convergence. Figure 4
explains this provisioning scheme visually.

While resource provisioning on a single resource can be
done as explained above, provisioning for multiple resources is
much more complex. It is possible to solve the optimality prob-
lem across multiple quality dimensions, because we consider
quality dimensions that are independent. Quality dimensions
are called dependent if increase in one dimension, results in
a decrease in the quality along another dimension [8], [9].
The multiple-quality dimensions can be solved if the utility
function is modeled as a linear combination of the individual
qualities. The resource allocation is solved for individual
qualities and then resources are combined using the same
linear function (as used to combine the qualities) to come up
with the final resource allocation. The problem for multiple
resource dimensions can be solved, if the maximal majorant
of quality versus resource mapping are known. The maximal
majorant is a bounding curve along each quality dimension.
We measure the maximal majorant for each resource, by
setting the other resources at their maximum values, and by
measuring the impact of change in quality due to the change
in the resources. Measuring the quality this way, decreases
the space to be searched for the optimum values, since we
know that the optimum has to lie on this maximal curve.
Thus, in order to arrive at an optimal fair provisioning, the
UFP algorithm is run for each quality and resource separately
to get their allocations, and then they are combined linearly
to obtain the final resource allocation.

B. Migration-free Utility-optimal Placement and Provisioning
Algorithm

The UFP algorithm discussed above makes fair resource
provisioning for a given set of VDs at a single data center. We
use the UFP algorithm as a building block to solve our MUPP
algorithm. In the MUPP problem, we need to place a new VD
request at a data center location, such that it maximizes the
overall system utility at that instant without any reallocations
or migrations. We do this by, running the UFP algorithm for
each of the data centers L; assuming the VD will be placed at
L;, and we pick the data center which maximizes the change in
system utility for each data center. By maximizing the change
in utility, we ensure that the overall system utility is also
maximized. The MUPP algorithm is optimal since, the UFP is
optimal. In addition, for each VD we pick a data center such
that the overall system utility is maximized.

V. COST-AWARE GLOBAL UTILITY-OPTIMAL PLACEMENT
AND PROVISIONING ALGORITHM

We divide cost-aware global utility-optimal allocation into
two sub-problems: (i) finding the Global Utility-optimal Place-
ment and Provisioning of all VDs such that the global utility
is optimized, and (ii) identifying the set of VDs to migrate
from the current configuration to the optimal configuration
such that the net benefit is maximized. We use a greedy
heuristic to solve the GUPP problem, since optimal algorithm

Algorithm 1 Migration-free Ultility-optimal Placement and
Provisioning Algorithm for Multiple Data Centers

1: Input: Utility functions U,(R,) of user groups from
offline profiling, list of currently available resources
{R1, Ry ... Ry} at [data centers

: Output: Resource allocations I?; ; for VDs v; where ¢ €
{1 ... n} that will maximize global utility U

3: begin procedure

4: for a VD request vd; belonging to group g do

5 for each data center L; do

6: Cache the current data center utility as Ul

7

8

9

[\e)

Calculate R! using the UFP algorithm
Calculate U"™°", the new system utility for I;
. Ul,diff — Ul,new _Ul,old

10: end for

11: Place = vd; at decg, such that,

12: Ukdifl = max { yhdiff }

13: Allocate RY to vd;

14: end for

15: end procedure

is exponential time in number of VDs N and locations L.
Given a set of VDs, there exists at least one ordering that will
yield an optimal solution. However, since the combinations
of resources, user groups and locations are very large in
number, it is difficult to determine the optimal ordering with
a brute force approach. Hence, we calculate the maximum
system utility possible under ideal conditions i.e., every VD
is placed at a location which generates maximum utility and
gets resource provisioning that generates best quality in the
given configuration. We call this the “upperbound” of the total
system utility or just “maximum total system utility”. We then
find a VD ordering that generates a total system utility that is
as close as possible to the maximum total system utility. Since
we are trying to maximize system utility by moving as close
as possible to the upperbound, we call this as “minimizing
utility loss” from the upperbound system utility.

For minimizing utility loss, we first calculate the upper-
bound of utility for each VD by giving it an optimal resource
provisioning and placement. To calculate the optimal resource
provisioning, we consider the ideal configuration where re-
sources are not fragmented across different data centers. We
pool resources across all the data centers and determine
upperbounds for resources allocation for VDs based on their
user group profiles. We call these as “resource upperbounds”.
Assuming VDs are allocated upperbound resource values at
each location, we find out the maximum utility that could be
generated for each VD. The sum of these values gives the
maximum total system utility. Since we take the maximum
utility for every VD for the calculation of the upperbound,
there cannot be any VD ordering which could generate a
total system utility more than the upperbound of the total
system utility. Since system resources are limited, this utility
upperbound is almost never achieved for all the VDs at once.
Details of this algorithm are elaborated as a 3-step process in
the following:

1) Determining Resource Upperbounds: We determine the
upperbound of resource allocation to each VD R by first
making an allocation using the UFP algorithm by pooling
resources across all data centers. This is the optimal allocation
if resources are not fragmented across multiple data centers,
and thus serves as an upperbound of allocation.

VDs are likely to
be placed at least
at the location of
their second their third
maximum utility maximum utility

VDs are likely to
be placed at least
at the location of

VDs are likely to
be placed at the
location of their
maximum utility

. Order VD Arrival
Order VD Arrival Sm}:ﬂra\)/(l‘lj _A"u;ilz) by maximum(
by Maximum Utility v { (Max1 — Max2) , | weeeeseseeeesesanes
Utility (Max2 -Max3))
Utility
Rmax X% of Y% of Z% of Rmin
Rmin Rmin Rmin
Where (Rmax-Rmin) x100 > X>Y>Z......... >1
Rmin

Fig. 5. Generic formulation of the GUPP algorithm for N data centers

2) Determining Utility Upperbounds: Next, we determine
the utility that would be generated by each VD at each of the
data centers if the upperbound resource allocation R** were to
be made available at each data center. This helps us determine
the upperbound utility that could be generated by each VD.

3) Finding the right VD arrival order: If we can place all
the VDs at locations that generate maximum utility, then that
would be the optimum placement which yields maximum total
system utility. But, that is not possible in most cases. Hence,
our greedy algorithm starts placing VDs one-by-one, at data
centers that generate maximum utility. The key insight here
is that, there is at least one combination of VD arrival order
that can generate the optimum utility. So, instead of dividing
VDs into non-overlapping subsets and assigning them in data
centers—which is what a number of greedy algorithms do for
the GAP problem-we try to find one of the ‘optimal’ VD
arriving orders. We use a metric in our greedy algorithm to
minimize the utility loss due to sub-optimal placement. We
use the utility upperbounds for each VD at each location to
sort the VDs in decreasing order of utility loss due to sub-
optimal placement. Figure 5 illustrates this idea. However,
the utility loss for each VD depends on where the VD is
eventually placed with respect to its maximum utility. Since it
is tough to foresee, we make an approximation based on the
amount of resources available in the system. Figure 5 shows
the progression of the ‘utility loss metric calculation’ with
resource load. Initially we sort VDs based on the maximum
utility generated, thereafter we give more importance to the
VDs that generate the higher relative system utility. However,
when the system is at a point where the ‘upperbound’ on
allocation is x% of the R,,;,, we switch the metric to a ‘utility
loss’ metric, captured by U/"** — Uﬁam2, i.e., the difference
between a VD’s utility at its maximum location and the second
maximum location. Similarly, as we move towards higher and
higher resource load regions, we progressively move the utility
loss metric to capture more sub optimal locations. Once the
VDs are sorted using ’utility-loss’ calculations, we use our
MUPP algorithm to place them one-by-one.

A. Cost-Aware Migration

The GUPP gives a new set of placement and provisioning
for all the VDs in the system. However, all VDs do not nec-
essarily generate a positive benefit upon a migration process,
which inherently is an expensive process. We model the cost
of migration and normalize it to the utility of the VDs and
then select only the VDs that generate positive net-benefit.

Algorithm 2 Global Utility Optimal Placement and Provision-
ing Algorithm

1: Input: set of VDs in the system {vdy, ..., vd,}

2: Output: Resource placement and allocations R; ; for VDs
v; where ¢ € {1 ... n} that will maximize global utility U

3: begin procedure

4: Pool the total resources available at all data centers into a
single set of resources Ry, ..IR;

5: Calculate R; for each vd; using the UFP algorithm

6: RI =Y (R — R™™) /Ry % 100

g
7. switch (RI)

8: case(RI > x) :

9 LUpes = ypreet
N 2 (2

10: break;

11: case(RI > y) :

12 LUT"(LT - (U_TVL(I.’L‘I_U_TYL(LJJZ)
N 1 K 1

13: break;

14: ...

15: case(RI > z) :

16: LU= Max{Upmer' — ypmes® ymae”
’ 3 4 L—1 zL L ’ L

Uimaw I U;ﬂaw _ Uima:v }

17: end switch

18: List vdsT'oPlace =Sort vd; based on LU"** in decreas-
ing order

19: Use MUPP algorithm to make resource allocation for VDs
in the order in vdsToPlace

20: end procedure

1) Modeling cost of migration: We model the cost of mi-
gration in such a way that the cost of migrating individual VDs
can be computed and added together. The cost of migration
Me; of a VD is split in two three parts as shown in Equation
(2): (i) a snapshot cost (Sc¢;(dc.)) incurred at the current
data center, (i) a deployment cost (Dc;(dcy)) incurred at
the (future) data center to which a VD is expected to be
moved, and (iii) a network cost of moving a VD which might
depend on the time of the day. Separating the cost into these
three components gives us more flexibility in computing the
cost of migration, and performing the cost-benefit analysis to
maximize net benefit.

Me; = Sci(dee) + Dei(deg) + Nei(t) 3)

2) Determining the Maximum Net-Benefit Migration Set:
The GUPP algorithm makes optimal allocations assuming all
VDs will be migrated to new locations. Since we want to
migrate only VDs that increase the utility, we now need to
select the VDs carefully such that the resource provisioning
made by GUPP does not change. To achieve this, we use
an incremental greedy algorithm where we identify pairs of
VDs that belong to the same user group whose locations are
swapped in the MUPP and GUPP allocations. If we find such
pairs of VDs, then these VDs can be migrated (i.e., swapped)
without worrying about their resource provisioning, since user
groups across data centers more or less receive the same
provisioning in GUPP. We call these pairs of VDs Positive
VD Pairs.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our MUPP and GUPP algo-
rithms using a novel “VDC-Sim” simulator that we have

developed in this study. Our simulations leverage profiles of
user groups and their applications obtained from a real VDC
testbed that we developed in our recent prior study [3].

A. Simulation Setup

User group CP_U(%HZ) Merpor}]f:gGB) Baan1dth(Mbps)
min max mMin max ML max
Engineering Site 0.7 1.5 | 035 1.2 0.2 1.5
Distance Learning 0.3 1.5 0.2 I.T 2 4
Campus Computer Lab| 0.5 1.4 0.2 0.8 0.1 1.2
TABLE I

USER GROUP PARAMETERS

In order to evaluate our defragmentation algorithms, we
developed an event-driven distributed resource allocation sim-
ulator viz., “VDC-Sim” for visually analyzing performance in
VDCs. The simulation setup consist of a number of data cen-
ters, where each data center consists of a number of servers of
fixed capacity. The number of data centers, number of servers
per data center and the capacity of each server can be specified
using a configuration file. An initialization script generates
a ‘VD-request-sequence’, which is a sequence of allocation
and de-allocation requests, belonging to different user groups,
generated randomly based on allocation-to-deallocation ratio.
Each data center and the thin-client of a VD have physical
locations which can be specified as {x, y} co-ordinates in a
2D-plane. The VD requests are allocated a physical location
randomly in a 2D-plane. The physical locations are used to
calculate the distance between data centers and thin-clients
and these distances are used to approximate the network
latency in the simulations. The main simulation loop takes
the VD-request-sequence and handles the events one-by-one.
For all the results in this section, we used the following
configuration: 3 data centers with 2 servers, where each server
has capacity of 16 GHz CPU, 32 GB RAM and 50 Mbps
bandwidth. Various placement and provisioning algorithms can
be plugged-in to the simulator to study their performance, for
the same VD-request-sequence and data center settings. The
simulator calculates the utility of each VD and the total system
utility and also the keeps track of the resources allocated, the
cost of resources, the marginal utility of each VD and also the
fairness index.

We simulate VDs belonging to different user groups, with
three different resource profiles. Table I shows the R,,;, and
R, values of the 3 resources considered for the 3 different
user groups. The R,,;, and R,,,, values were obtained in
a real-world testbed [1] as explained in Section IV-A. We
measure and use two qualities — the normalized application
open times and the normalized application response times, the
two quality dimensions that we consider while calculating the
VD utilities.

As explained in Section III, we also consider the network la-
tency while calculating the utility of individual VDs. Network
latency is an important factor for VD clients performance as
shown in [2]. Although, the quality of all user groups decreases
as latency increases, the rate of decrease need not be the same
for each user group.

B. Algorithms Compared and Results

We compare our UFP algorithm (provisioning algorithm for
MUPP) against the U-RAM algorithm from our previous work

15 N
& .

> o
£10 K
=] E
”ﬁ*]
5 * UFP
*."'“" , + URAM
g/ < STRA
% 10 20 30 40 50 60 70

No. of VDs

Fig. 6. Utility versus No. of VD request for a Single Data Center

‘ « UFP
‘,p"" + URAM
- STRA

+ i

o
@ .

o
@ §
i
+
4

=3
©
+
4
4
s
+
+
»,

+

o°
N €
L
+

+

e

>

+
+

o
@
@
st
+
f
+
+

:
4

0 10 20 30 40 50 60 70
No. of VDs

Normalized Fariness Index
o
@

Fig. 7. Fairness Index versus No. of VD request for a Single Data Center

on provisioning [3], and with a static provisiong algorithm
called the “Single-Tier Resource Allocation” (STRA). STRA
has fixed pre-allocated VDs that it allocates for all user thin-
clients. U-RAM is an utility-optimal algorithm for a single
site and in general produces equal or more utility for a single
site than the UFP algorithm when resources are available. We
will use U-RAM as the provisioning algorithm while doing
the placement analysis so that we can isolate and study the
effect of VD placement on utility. Futher, we compare our
MUPP algorithm with ‘Least Cost’, ‘Least Load” and ‘Least
Latency’ placement schemes.

1) Provisioning Analysis: To begin with we present the
results of the STRA, U-RAM and UFP algorithms at a single
site. Figures 6 and 7 show the utility and the fairness index
results for STRA, U-RAM and UFP algorithms. As we can see
from Figure 6, STRA either under-allocates or over-allocates
resources and hence both its utility and scalability (number of
VDs allocated) suffers. U-RAM makes allocations such that
it maximizes utility, but does not have any control over the
relative qualities between user groups and hence the fairness
suffers. The UFP algorithm sacrifices an insignificant amount
of utility in order to achieve fairness between the user groups
as shown in Figure 7. The fairness of UFP drops slightly in
the middle region because of the discrete nature of the quality
profiles.

-—MUPP
—+-URAM-LeastLatency
URAM-LeastCost
o URAM-LeastLoaded ||

| |
100 150 200 250
No. of VDs

Fig. 8. Comparison of Utility of Placement Schemes for 3 Data Centers

80r
- MUPP
col GUPP
g
£
£ a0
=
20f
o ‘ ‘ ‘ ‘
0 100 200 300 400 500 600

Simulation Events

Fig. 9. Utility versus Simulation Instance, 3 Data Centers with Deallocations

2) Placement Analysis: Next we analyze the utility and
fairness index of the MUPP algorithm, with different place-
ment algorithms, when placing arriving VDs across 3 data
centers, without any deallocations. Figure 8 shows the utility
generated by the MUPP and the other placement algorithms.
We can see that MUPP achieves the best utility possible, even
while guaranteeing quality fairness between the different user
groups. The Least Cost has the worst performance in terms
of utility since it places all the VDs at the same data center
to decrease cost during the initial phase, even though there
are abundant resources at the other data centers. The most
interesting aspect of the Figure 8 is that even the Least Latency
algorithm performs worse than the MUPP, proving our original
claim that just placing the VDs at a data center that has the
least latency does not result in an optimal placement. The
Least Latency algorithm performs similar to MUPP in the
region where there are abundant resources, but as resources
start to become scarce, it might not be possible to place a
VD at a data center with the least latency. In this region, the
utility of a VD is affected by both the resources available at a
data center and the latency to the data center, and for optimum
performance a placement algorithm should consider both these
aspects, which is what MUPP does.

3) GUPP and Migration Analysis: In this section we
analyze the performance our GUPP algorithm and the Cost-
Aware Migration algorithm. First we compare the utility of
GUPP algorithm with MUPP. Since we have already shown
that the MUPP algorithm performs better the other placement
heuristics in the previous discussion, we consider only the
performance of MUPP while comparing with the performance
of GUPP.

While MUPP is optimal for given order of VD arrival,
it is not optimal for a given set of VDs. This is precisely
what the GUPP is designed to address. Figure 9 shows a
similar comparison for a VD-request-sequence which has both
allocations and de-allocations. The difference in utility is seen
due to a VD with lower utility value already allocated at a
data center, results in a VD of potentially higher utility value
being directed to a sub-optimal location. As can be seen in the
Figure 9, the gap in the utilities increases as the simulation
progresses, since the deallocations increases the ‘holes’ in the
resource allocations and sub-optimal allocations accumulate
in the MUPP, while GUPP is able to reallocate VDs to better
locations to improve the overall system utility.

Now we explain the migration analysis which is an integral
part of GUPP. Figure 10 shows the difference between the
locations of VDs between the MUPP and the GUPP allo-
cations. As we explain in Section V-A, even though a large
number of VDs are sub-optimally placed in MUPP, it might
not be beneficial to migrate all of these VDs to the locations

- Campus Computer Lab
1000 Distance Learning 99,
* Engineering Site 10 15 #2865
900 - 4350 4355 A
ool ja s MO]
#352 51
00| 2296 a3
2412 428
o 2048 4280 1
13
0 2163 “ 2251 4267 B
4266 258 #252 +292
2433 FEZ 72 #31
a0l #9419 28]
28334944 #285 2505
1 481 #268
00| 2 il
46 4287 012 4205 #350 #1438 15
s +278 #0354 H14E il
o (&) 42174
ol A2 4200
iy #O76 4294
Moot | | | | I 4085 | M2
o0 20 00 w00 E w00 700 w0 w00 To00

Fig. 10. VDs that are not optimally placed at the end of simulation

Parameters Campus Distance Engineering
Lab Learning Site
Total Allocated 185 156 159
Total Deallocated 67 42 58
VDs Suboptimally Placed 22 25 16
Unique Positive Pairs 8 5 4
MUPP Utility Sum 9.9628 9.0074 7.6427
Utility After CA Migration | 12.9704 10.4426 8.6823
Cost 0.6272 0.3903 0.3142
Benefit 2.3804 1.0448 0.7254
Percent Increase 30.1889 15.9326 13.6029
TABLE II

SUMMARY OF COST-AWARE MIGRATION ALGORITHM

suggested by GUPP. We need to analyze which of these VDs
should be migrated after factoring the cost-of-migration. We
use a cost function given by Equation 3 for the cost-benefit
analysis. We normalize the snapshot, deployment and the
network costs relative to the max utility generated by a VD
(which is 1.0). We use a fixed snapshot and a deployment cost
of 0.005 units, and a network cost of 0.0001 per unit distance.
Network cost is multiplied by the distance between the current
and the new location of a VD. As the distance between the
data centers increases, the network cost and hence its impact
on the migration cost increases. The positive pairs identified
for migration result in a net-benefit after migration as shown
in Figure 11.

Table II summaries the results of the Cost-Aware Migration
algorithm for the same instance as shown in Figure 11,
categorized by the 3 user groups Campus Computer Lab,
Distance Learning and Engineering Site. We can note that -
after calculations, subtracting the cost of migration from the
benefit will still have 30%, 15% and 13% increase in the utility
of individual groups, and the improvement in the user QoE will

T T T "
C: Ci ter Lab R
+ Campus Computer Lal
s 850 1355 amp pu 4
Distance Learning
e o
00 |- O w352 + Engineering Site *‘ q
2851
| £296 a3
2412 428
000 2848 T
o0 |- 1 i
2 202 |
0
a0l 2872 #3667
#285 £305
#2068
an | 02 o 1205 4950]
4842
200 #5354 i
#345
@
00| il
4376 %
(%01, il \ \ \ 085 | 20
00 200 00 w00 00 w00 700 w00 w00 o0

Fig. 11. Positive VD Pairs identified for Migration

be higher. Thus, the Cost-Aware Migration algorithm results
in an improved QoE for the user, better resource utilization
and scalability for the CSP.

VII. CONCLUSION

In this paper, we identified and provided an optimal solution
for the resource fragmentation problem in VDCs. Although
we study the problem in the context of VDCs, we believe
that our solution can be applied to any distributed computing
infrastructure.We devised a practical framework for modeling
the exponential complex problem of Placement and Provision-
ing together, and derived an optimal solution that considers
the user quality, the relative fairness of quality between user
groups, the network factors such as latency, and the cost of
migration. Our proposed multi-step solution comprising of
migration-free placement and provisioning for quick online
resource allocation i.e., improved performance and a global
utility-optimal placement and provisioning for improving the
resource utilization i.e., increased scalability - provides a
pertinent approach to the combinatorial problem of resource
fragmentation.

The key insight from our GUPP heuristic is the minimiza-
tion of the ‘utility loss’ due to sub-optimal allocations. Our
Cost-Aware Migration algorithm is incremental and selects
only VD pairs that can be swapped such that the net benefit
of every pair of VDs swapped is positive - while considering:
the snapshot cost, the deployment cost and the network cost
of migration. Our simulation results demonstrate that defrag-
mentation is an important optimization step that can enable
CSPs to substantially improve user QoE and VDC scalability.
In addition, our proposed defragmentation scheme empowers
CSPs to handle resource allocations of VDs across data centers
in a manner that balances trade-offs between cost incurred and
QoE delivered.

REFERENCES

[1] VMLab: Testbed for Desktop Virtualization Experiments. http://vmlab.
oar.net.

[2] A. Berryman, P. Calyam, A. Lai, and M. Honigford. VDBench: A
Benchmarking Toolkit for Thin-client based Virtual Desktop Environ-
ments. In Proc. of IEEE CloudCom, 2010.

[3] P. Calyam, R. Patali, A. Berryman, A. Lai, and R. Ramnath. Utility-
directed Resource Allocation in Virtual Desktop Clouds. Elsevier
Computer Networks Journal (To Appear), 2011.

[4] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant Resource Fairness: Fair Allocation of Heterogeneous
Resources in Datacenters. Technical Report UCB/EECS-2010-55, EECS
Department, University of California, Berkeley, May 2010.

[5] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual machine
hosting for networked clusters: Building the foundations for autonomic
orchestration. In In Proc. VIDC 06, 2006.

[6] A. Hillier. Server Capacity Defrag: Maximizing Infrastructure Efficiency
through Strategic Workload Placements. http://www.cirba.com/assets/
docs/CiRBA-wp-Server-Capacity-Defrag.pdf, 2011.

[71 G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz. Topology-aware
resource allocation for data-intensive workloads. SIGCOMM Comput.
Commun. Rev., 41:120-124.

[8] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Resource
Allocation Model for QoS Management. In In Proceedings of the IEEE
Real-Time Systems Symposium, pages 298-307, 1997.

[9]1 R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. Practical
Solutions for QoS-based Resource Allocation Problems. In In IEEE
Real-Time Systems Symposium, pages 296-306, 1998.

[10] D. B. Shmoys and E. Tardos. An approximation algorithm for the gen-
eralized assignment problem. Math. Program., 62:461-474, December
1993.

[11] H. N. Van, E. D. Tran, and J.-M. Menaud. SLA-Aware Virtual Resource
Management for Cloud Infrastructures. In CIT (1), pages 357-362, 2009.

