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Abstract—Popular applications such as email, photo/video
galleries, and file storage are increasingly being supported by
cloud platforms in residential, academia and industry commu-
nities. The next frontier for these user communities will be to
transition ‘traditional desktops’ that have dedicated hardware
and software configurations into ‘virtual desktop clouds’ that
are accessible via thin-clients. In this paper, we describe an
intelligent resource placement framework for thin-client based
virtual desktops. The framework leverages principles of software-
defined networking and features a ‘unified resource broker’
that uses special ‘marker packets’ for: (a) “route setup” when
handling non-IP traffic between thin-client sites and data centers,
(b) “path selection” and “load balancing” of virtual desktop flows
to improve performance of interactive applications and video
playback, and to cope with faults such as link-failures or Denial-
of-Service cyber-attacks. In addition, we detail our framework
implementation within a virtual desktop cloud (VDC) setup in
a multi-domain Global Environment for Network Innovations
(GENI) Future Internet testbed spanning backbone and access
networks. We present empirical results from our experimentation
that leverages OpenFlow programmable networking, as well as
perfSONAR instrumentation-and-measurement capabilities for
validating our framework in GENI under realistic settings.
Our results demonstrate the importance of scheduling regulated
measurements that can be used for intelligent resource placement
decisions. Our results also show the feasibility and benefits of
using OpenFlow controller applications for path selection and
load balancing between thin-client sites and data centers in VDCs.

Keywords-Virtual desktop clouds, Optimal resource allocation,
Software-defined networking, Cloud experiment in GENI

I. INTRODUCTION

There has been a rapid adoption of “cloud” platforms for
online applications such as email, photo/video galleries and
file storage in academia and industry. The next frontier for
these user communities will be to transition their “traditional
distributed desktops” that have dedicated hardware and soft-
ware installations into “virtual desktop clouds” (VDCs) that
are accessible via thin-clients. Moreover, in the not so distant
future, we can envisage home users signing-up for virtual
desktops (VDs) with a VD Cloud Service Provider (CSP)
providing Desktop-as-a-Service (DaaS) as a utility. With such
a utility service, a thin-client i.e., a set-top-box can be shipped
to a residential user to access his/her personalized VD, similar
to the model we have today for other common computing and
communication needs such as VoIP (e.g., Vonage), and IPTV
(e.g., Roku). This box can be connected to television monitors,
or computer monitors, and multiple residential users can have
their own unique login through this box to their VDs.

This material is based upon work supported by the National Science Foun-
dation under award numbers CNS-1050225, CNS-1205658, and VMware.
Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation or VMware.
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Fig. 1. Components of Virtual Desktop Cloud Infrastructure

The drivers for these transitions of traditional desktops to
VDCs are obvious in terms of user convenience, consistent
user-perceivable peak performance, and cost-savings: (i) desk-
top support in terms of hardware, operating system, application
and security upgrades will be easier to manage, (ii) the number
of underutilized distributed desktops unnecessarily consuming
power will be reduced, and (iii) mobile users will have wider
access to their desktop applications and data.

Figure 1 shows the various system and network components
in a typical VDC, comprising of two or more inter-connected
data centers that handle thin-client connections from several
user sites on the Internet. The “brain” of the VDC is a unified
resource broker (URB) that receives the VD requests and han-
dles them by making decisions regarding the “provisioning”
(i.e., resource sizing) and “placement” (i.e., resource mapping)
of resources. At each data center, a hypervisor framework
(e.g., VMware ESXi, Xen) is used for computer virtualization
i.e., to create VDs configured with popular applications (e.g.,
Excel, Internet Explorer, Media Player) as well as advanced
applications (e.g., Matlab, Moldflow). VLAN extensions and
software-defined networking [1] across multi-domain networks
can be used for network virtualization in the infrastructure. At
the thin-client side, users connect using remote display de-
vices that use thin-client protocols such as Microsoft Remote
Desktop Protocol (RDP) and Teradici PC over IP (PColIP) [2].

In order to allocate and manage VDC resources in a
cost-effective manner at Internet-scale user loads, CSPs are
faced with unique provisioning and placement challenges.
User workload profiles in VDCs are bursty (e.g., during
daily desktop startup, when user switches between text and
graphic intensive applications), and thin-client user Quality
of Experience (QoE) is highly sensitive to network health



variations in the Internet [3]. Unfortunately, existing works
focus mainly on managing server-side resources based on
utility functions of CPU and memory loads [4 - 7], and do
not consider network health and thin-client user QoE. There is
surprisingly sparse work [8 - 9] on resource adaptation coupled
with measurement of network health and user QoE. Works
such as [9] and [10] highlight the need to incorporate network
health and user QoE factors into VDC resource allocation
decisions.

It is self-evident that any cloud platform’s capability to
support large user workloads is a function of both the server-
side desktop performance as well as the remote user-perceived
QoE. In other words, a CSP can provision adequate CPU and
memory resources to a VD in the cloud, but if the thin-client
protocol configuration or VD placement does not account for
network health degradations and application context, the VD
may become unusable for the user. Hence, there is a need to
couple “human-and-network awareness” within Internet-scale
resource allocation frameworks for: (a) minimizing costly
cloud resource over-provisioning, (b) avoiding guesswork in
configuring thin-client protocols and VD placement, (c) adapt-
ing resource allocation and placement to changing fault-levels,
and (d) ultimately delivering optimum user QoE of virtualized
desktop applications.

Moreover, VD delivery using VDCs can be considered as
a ‘Future Internet’ application due to its specialized infras-
tructure needs that the current Internet infrastructure does not
inherently support. Thin-client based VD protocols require
several tens of Mbps of network bandwidth for supporting few
tens of users, and low network latency is critical for smooth
user interactions. As shown from VD protocol characterization
studies in [2], one of the most common thin-client protocol in
today’s enterprises namely, PCoIP will use as much bandwidth
given to it, reacts sensitively to varying network health, and
delivers corresponding user quality of experience (QoE). Bet-
ter quality translates to smoother video, crisp keyboard/mouse
control actions for user applications in VDs. It should be noted
that thin-client encoding latency may be of greater importance
in certain scenarios where user interactivity with VD is more
critical than audiovisual quality perception of VD screen
scrapes. Moreover, bandwidth consumption is dependent on
the content characteristics, thin-client display resolution and
tuning of encoding parameters.

In addition, resource requirements for Desktop-as-a-Service
(DaaS) are much higher (e.g., every VD may need resources on
the order of 2 GHz CPU, 2 GB RAM and 2Mbps end-to-end
network bandwidth) and predicting resource allocation needs
is challenging due to bursty nature of workload profiles. In
comparison, current cloud infrastructures that support online
applications (e.g., photo/video sharing web-sites, customer re-
lationship management software) are transaction-oriented and
their workloads are more predictable [6], and approaches such
as overprovisioning are not cost-prohibitive, opposed to the
DaaS case. Hence, DaaS platforms are not widely supported
by Cloud Service Provider (e.g., Amazon, Microsoft, Dell)
due to above challenges in delivering optimal user QoE with
current cloud infrastructures on the Internet.

To develop and demonstrate validity of intelligent resource
allocation methodologies for VDCs, researchers need to exper-
iment on multi-data center VDC settings with realistic user,
network and system loads, and with geographically distributed
thin-client sites. We found that the Global Environment for
Network Innovations (GENI) infrastructure [11], which has
emerged as the federated cloud to be ideal for controlled

as well as real-world VDC experiments. It provides state-
of-the art system and networking resources, as well as a
vibrant user community that is engaged in the creation, support
and usage of Future Internet technologies. It also provides
a ‘sliceable’ Internet infrastructure with wide-area software-
defined networking using OpenFlow technologies that provide
the ability to experiment with dynamic allocations and mi-
grations in VDC experiment slices. The computational power,
networking bandwidth, network programmability, user opt-in
mechanisms, instrumentation-and-measurement services, and
experiment workflow tools in GENI [12] - [16] are also appeal-
ing to run cloud-based research experiments in a repeatable,
scalable and distributed manner.

In this paper, we present a novel, intelligent resource
placement framework that uses human-and-network awareness
(i.e., user group profiles and network health measurements)
for thin-client based VD delivery in VDCs. The framework
leverages principles of software-defined networking and fea-
tures a URB component that uses special ‘marker packets’
for: (a) “route setup” when handling non-IP traffic within
VLANSs between thin-client sites and data centers, (b) “path
selection” and “load-balancing” of virtual desktop flows to
improve performance of interactive applications and video
playback, and to cope with faults such as link-failures or
Denial-of-Service cyber-attacks. URB orchestrates “control
plane”, “data plane” and “measurement plane” components to
handle corresponding flows within VDCs in a Future Internet
infrastructure.

We implement our framework in a multi-domain GENI
testbed spanning backbone and access networks connecting
data center as well as thin-client user sites. Our implemen-
tation in GENI parallels how similar infrastructure slices are
setup within intrinsic federations of content providers (e.g.,
Hulu) and content-delivery network providers (e.g., Akamai).
It is an established practice today for network providers
to have commercial service agreements that provide access
and control interfaces within their infrastructures to content
providers. Consequently, content providers (i.e., VD content in
our case) are able to service end-users with content at different
scales and resolutions with appropriate resource placement
techniques and technologies. Our emulation experimentation
leverages OpenFlow programmable networking, as well as
perfSONAR [17] instrumentation-and-measurement capabili-
ties for validating our resource placement framework under
realistic settings. Using empirical results from our framework
implementation and related experiments in the GENI testbed,
we demonstrate the importance of scheduling regulated mea-
surements that can be used for intelligent resource placement
decisions. We also show the feasibility and benefits of using
OpenFlow controller applications for path selection and load
balancing between thin-client sites and data centers in VDCs.

To the best of our knowledge, our work is the first to detail
an intelligent resource placement framework for VDCs that
uses human-and-network awareness. Also, our work is the first
to use performance intelligence of user group profiles and
network health factors and leverage it within an OpenFlow
controller application to handle VDC resource placement de-
cisions under realistic settings. We believe that our intelligent
resource placement framework and implementation in GENI
experiments lay the foundation to develop Future Internet
DaaS offerings that can handle: (a) user behavior/cyber-
attacks/cross-traffic, (b) actual user accessible VDC applica-
tions for enterprise and residential end-user mobile computing,
and (c) virtual classroom labs in universities.



The reminder of the paper is organized as follows: Section II
describes related work. Section III presents our intelligent
resource placement framework and its implementation work-
flow in a VDC. Section IV details our VDC experiment slice
setup in a multi-domain GENI testbed. Section V contains
salient performance results from our VDC resource placement
experiments. Section VI concludes the paper.

II. RELATED WORK

The rapid development of cloud computing environments
and recent advances in virtualization have created new re-
quirements for traditional networks and distributed computing.
There have been several recent works that have proposed novel
network virtualization and resource adaptation techniques be-
tween geographically distributed data centers supporting cloud
computing environments.

OpenFlow technology [1] that is built upon software-
defined networking principles and supported in several ven-
dor switches has emerged as a prominent solution for pro-
grammable control of routing and other services (e.g., virtual
machine migration) for application flows. Authors in [18]
show how programmable flows can be realized by matching
packet flows based on the IP addresses, MAC addresses and
the port numbers. In their packet forwarding scheme, packets
are forwarded to a particular output port if a flow entry
for a client is found. Else, the packet is forwarded to a
controller application, which then makes forwarding decisions.
The demonstrations done in [19] and [20] are based up on
this approach for the controller application implementation.
In our work, we also adopt a similar approach for installing
flows at the time of a thin-client’s request to the URB for a
VD connection. Once the flows are setup, the traffic between
the thin-client and corresponding VD do not pass through
the controller application and thus no additional delays are
introduced within the application flows.

Alternate technologies such as Overlay Transport Virtualiza-
tion (OTV) [21], and more recently, Virtual Extensible LAN
(VXLAN) [22] have been proposed within industry groups
that are in contrast with the open-standards used in OpenFlow
solutions. VXLAN has been adopted within several industry
vendor products for scalable LAN segmentation and for auto-
mated provisioning of logical networks between data centers
across Layer 3 networks. A 24-bit LAN segment identifier
and MAC-in-UDP encapsulation are used within VXLANSs for
achieving segmentation between data centers and to realize
Layer 2 elasticity and IP address localization to enable for
e.g., multi-tenancy and migration of virtual machines across
multiple Layer 2 domains. In our work that relies on OpenFlow
technology, we use the concept of ‘marker packets’ within
packet headers that are processed by the controller application
to handle traffic (i.e., non-IP traffic) within VLAN extensions
across multiple Layer 3 networks.

In the context of implementation of intelligent adaptation
within cloud environments, authors in [23] recommend a
unified broker architecture for resource allocations of client
requests similar to our URB-centric approach to handle thin-
client requests for VDs. They also describe how unified
resource brokers can perform critical functions such as per-
formance monitoring, application isolation, live migration and
suspend/resume capabilities of virtual machines for appropri-
ate provisioning and placement functions. The work in [24]
also supports the concept of central and integrated control
for such critical functions through a unified resource broker
that leverages a controller application to improve application

performance (Hadoop application was discussed in their case)
with relatively small overhead for configuration.

The work in [26] leverages correlation information between
desktop traces to decide how many desktops can be pro-
visioned at any given data center location. In [25], a fair
resource allocation scheme is proposed where client requests
are statically placed in a round-robin manner across data
centers based on resource dominance levels. Works such
as [27] and [28] propose dynamic placement solutions that
involve virtual machine migrations between data centers. Au-
thors in [27] use a reinforcement-learning based approach to
automate virtual machine reconfiguration in response to chang-
ing application demands or resource supply. Authors in [28]
develop an online-reconfiguration scheme that features a ge-
netic algorithm that dynamically reallocates virtual machines
across data centers by predicting the future workloads of the
application, and aims to conserve overall power consumption.
Similarly, a genetic algorithm approach is used in [29] to
make resource allocations based on network topology and
application requirements for data-intensive workloads.

In comparison to these works, we use an utility-directed
provisioning and placement model i.e., U-RAM [3] that is
dynamic in nature, and considers utility-functions of user
groups obtained from real-time performance intelligence feed-
back corresponding to system, network and user QoE mea-
surements. U-RAM initially places VDs and later re-allocates
(i.e., migrates) them amongst distributed data centers such
that performance and scalability in the cloud infrastructure is
maximized. We remark that our earlier GENI experiments and
results that are mainly related to U-RAM based ‘provisioning’
considerations within VDCs can be found in [30]. Whereas
in this work, our focus is on experiments and results that
relate to ‘placement’ considerations within VDCs, particularly
leveraging OpenFlow capabilities for route setup, dynamic
path selection and load balancing of VD application flows.
In addition, we introduce the novel concept of using a marker
packet for installing flows in a manner that does not require all
flow traffic to pass through the controller, which may impact
the forwarding rate. Once a marker packet for an ingress flow
is processed by the URB, there is direct flow communication
between the thin-client site and the VD application within the
data center chosen by U-RAM.

III. VDC RESOURCE PLACEMENT FRAMEWORK
A. Architecture

Figure 2 shows our proposed intelligent VDC resource
allocation architecture that specifies how the various compo-
nents interact with each other when handling VD requests and
application flows. The URB module functions are orchestrated
by the “measurement engine”, “service engine” and “routing
engine” sub-modules via the “control”, and “measurement”
planes. When a new VD request arrives and its security token
is validated, a resource allocation decision is made by the
service engine based on the performance intelligence provided
by the measurement engine. Using a secure channel, the
service engine provisions the system resources at the preferred
data center that can provide the best utility to the VD. The
service engine also instructs the routing engine to program the
corresponding flow tables or group tables in the intermediate
switches using the OpenFlow protocol on a secure channel.
Once such a provisioning is in place, the thin-client and VD
application communications involving RDP/PColP protocols
occur via the “data” plane and do not involve the URB.
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Such a decoupling of the data plane achieved by leveraging
OpenFlow technology for forwarding traffic avoids additional
delays while handling VD application flows. It also allows
any desired actions or adaptations to be taken in “real-time”
at intermediate OpenFlow-capable network devices on packets
that match these flows.

The measurement engine relies on instrumentation-and-
measurement frameworks that are open-source (e.g., perf-
SONAR [17] for active measurements of network status using
tools such as Ping and Iperf; Wireshark for passive measure-
ments using TCPdump packet captures) as well as propri-
etary (e.g., VMware Power Tools or LiquidWare Labs Strato-
sphere UX that provide hypervisor related status measurements
in terms of number of active VD connections, CPU and
memory measurements). The collected measurements via the
measurement plane are analyzed to identify device platform
(e.g., tablet, smartphone, PC) and capabilities (e.g., resolution,
identity attributes), detect congestion and faults in system
and network devices, and such performance intelligence is
passed to the service engine along with on-going monitoring
information of the various status measurements.

The service engine authenticates user’s VD requests using
standard mechanisms (e.g., Active Directory or LDAP), and
allows them to access their entitled virtual desktops at a
data center that provides the highest utility. The decision to
provision VD resources at a data center for a VD request is
provided by the resource optimization module in the service
engine. The decision is based on the information available
(through the measurement engine) regarding the resource
slack levels obtained from hypervisor APIs, network health
measurements, and based on the user group to which the VD
request belongs to. For argument sake, we can consider two
user groups: Engineering Site, and Distance Learning Site,
each having a custom set of applications that use different
amounts of CPU, memory and network bandwidth resources.
We can generally assume that the Distance Learning Site
uses more video streaming related applications, and hence the
profile would indicate relatively higher amounts of network
bandwidth provisioning. Similarly, the Engineering site can be
generally assumed to use advanced applications (e.g., Matlab,
Moldflow) that require relatively higher amounts of CPU and
memory provisioning. The VD request is then assigned to a
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‘desktop pool’ corresponding to the resource profile for the
corresponding user group created by the system provisioning
module at the chosen data center.

Algorithm 1 presents the sequential steps for the intelligent
resource allocation to provision and place a new VD request. It
uses U-RAM dynamic resource provisioning described in [3]
as well as the path-selection and load-balancing that occurs
by leveraging OpenFlow when maximizing Net-utility in the
VDC. The input at the time of processing the new VD request
includes the utility functions of the user groups, available slack
levels in resources at data centers, and the possible path flow
entries between the thin-client site of the new VD request and
all of the data centers. If utility functions of user groups are not
considered, fixed over provisioning schemes are selected that
are cost-wise prohibitive compared to U-RAM. The decision
of U-RAM placement i.e., the path selection for the thin-
client to the data center that maximizes Net-utility is done
by polling each data center’s change in utility if the new VD
were to be placed at their site. The higher the change i.e.,
AU, the better the provisioning-placement combination at the
data center due to resource slack availability, and thus better
the Net-utility derived in the VDC. If sufficient resources to
produce minimum satisfactory VD QoE do not exist at any
data center, the VD request allocation is denied. The overall
challenge is to deliver satisfactory VD QoE with changing
load patterns and resource availability.

Based on the path selected i.e., the resource placement
decision, the service engine delegates the routing engine to
setup the routes between the thin-client site and the chosen
data center. The service engine also ensures that any network
disruptions do not affect the service (i.e., does not violate
any Service Level Agreements (SLAs) pertaining to e.g., user-
perceivable interaction response times in VD applications). A
disruption will result in a VD session to be treated as a new
VD request and the steps in Algorithm 1 will be invoked for
subsequent re-placement. The routing engine maintains and
controls the network links topology information. Hence, in the
event there is a need to update the logic to switch paths (e.g.,
due to link failure or if a path that provides better performance
is discovered by the measurement engine), or balance loads
between the thin-client and data center sites (e.g., using backup
routing instances with alternate routes), the routing engine can
programmatically implement the adaptation rules as triggers
that invoke steps of Algorithm 1 at intermediate OpenFlow-
capable network switches in the order of milliseconds -
without causing much loss in the original VD packet flow.



Algorithm 1 Intelligent Resource Allocation Algorithm

1: Input: Utility functions Uy (R) of user groups from offline
profiling, list of available resources {R;, Ro ... R} at
[ data centers, and list of paths {P; 1, P;2 ... P} from
thin-client i to every data center

: Output: Resource allocation R; ; and path flow entry P; j,
for new VD request v; that maximizes Net-utility U

[\e)

3: begin procedure

4: for a VD request vd; belonging to group g do

5 for each data center I; do

6: Update the current data center utility UP!?

7 Calculate R! using the U-RAM algorithm

8 Calculate Set {Pi,la Pi,2 PLk}

9 for each path P, ;; do

10: U[f}f—,:”k = calculate the U;*** for path P;
11: end for

12: AU, p,, =mazx { U'g } - UPY

13:  end for

14:  Place vd; at L; such that, AU = max { AUy p,, }

15: Allocate R;; to vd; with path P ;. only if R;; produces
Qmin of usability, else deny the vd; allocation

16: end for

17: end procedure
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Fig. 4. Marker Packet and Header Format

B. OpenFlow Route Setup WorkFlow

To setup routes in the routing engine, a ‘marker packet’
handler module is used. The ‘marker packet’ concept is our
novel contribution in this paper that is needed for orchestrating
the workflow between the thin-client, URB and OpenFlow-
capable switches, as shown in Figure 3.

The marker packet format as shown in Figure 4 is basically
a UDP packet with the following header information:

o Length: Marker packet payload length

e Group ID: User group (e.g., Engineering Site, Distance
Learning Site) that the VD request belongs to

o Transport Protocol: Remote desktop protocol used by the
thin-client

e OpCode: Used to determine the services to be enabled
on the packet flow

o Connection Broker IP/MAC Address: IP/MAC address of
the connection broker

o Thin-client IP/MAC Address: IP/MAC address of the
thin-client

o Server Port: Port number on the server to which the thin-
client connects

o Client Port: Port number used at the thin-client

As shown in Figure 3, there is a six-step workflow to
setup routes for thin-clients to connect to their provisioned
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VDCloud Experiment Slice Setup in GENI

VDs at the chosen data center. We can assume that the CSP
has shipped a ‘smart’ thin-client that is pre-configured to
connect to the CSP’s VDC infrastructure. Steps 1 and 2 are
completed a priori to any VD request arrival, and involves
the OpenFlow switch joining the network controlled by the
OpenFlow controller application running atop for e.g., NOX
network operating system [19]. When a thin-client actually
requests a VD in Step 3 by using the IP/MAC address of the
connection broker pre-programmed by the CSP in the thin-
client, it sends a marker packet that is recognized by the edge
switch of the OpenFlow network, which then punts it in Step
4 to the URB of the VDC. The marker packet handler in the
routing engine is invoked to parse the tuples in the header.
Based on the parsing and the service engine instructions,
the controller application in Step 5 sets up the client/server
flows forwarding decisions from the thin-client location to the
chosen data center. It also configures the intermediate network
switches with any other service parameters such as actions
upon link failure or events that trigger load balancing, flow
traffic classification and QoS settings. The service engine then
responds back to the thin-client with an updated marker packet
that overwrites the IPP/MAC address of the connection broker
with the IP/MAC address of the entitled VD. In Step 6, the
thin-client begins accessing the VD applications through the
flows set up in the network by the controller application. Note
that, in the event the URB migrates the VD as part of the
resource optimization or system load balancing, it ensures that
the controller application is consistent by updating the flow
tables suitably.

IV. SLICE TOPOLOGY SETUP AND CONFIGURATION

We now describe our “VDCloud” experiment slice topology
setup and configuration shown in Figure 5 that we developed to
validate our intelligent VDC resource allocation architecture.
The VDCloud experiment is part of a multi-domain GENI
testbed spanning backbone networks (e.g., Ohio Regional
Network - OARnet, Utah Regional Network - UEN, GENI
meso-scale backbone - TangoGENI that is operated in part
by Internet2/NLR) and access networks (campus networks of
e.g., The Ohio State University, University of Utah, University
of Wisconsin). Two parallel slices were configured on top
of this common infrastructure testbed, one for the VDCloud
experiment traffic, and another for the instrumentation and
measurement traffic, which provides performance intelligence



for resource adaptation decisions in the VDCloud experiment
slice. Given that the system platforms are different for the
instrumentation and measurement in comparison to the exper-
iment, and to ensure better isolation and manageability, we
chose to implement them in separate parallel slices.

There are four major components of our VDCloud ex-
periment slice: (i) data centers, (ii) thin-client sites, (iii)
programmable network, and (iv) unified resource broker. For
the experiment results presented in this paper, we had a 2
data center configuration comprising of OSU VMLab and
Utah Emulab resources with ESXi 4.0 hypervisor, and with
extended VLAN connectivity (Layer 2) on the Internet. The
“wide-area ProtoGENI” (WAPG) nodes located at meso-scale
campuses (i.e., Stanford, Georgia Tech, Wisconsin, Rutgers)
served as thin-client sites. One of the Emulab nodes was used
to host our VDCloud experiment controller application. The
traffic from the thin-client sites were made to flow within
VLANSs (Layer 2) through OpenFlow-enabled network seg-
ments in the TangoGENI meso-scale backbone [14] network
before reaching the data centers. Each of the thin-client sites
at the different universities also have a separate interface that
allows IP routing (Layer 3) to the data centers. However, the
Layer 3 paths comprise of additional router hops and multiple
firewalls, and share network bandwidth resources at the edge
with other campus core traffic. We configured the thin-clients
with the RDP 6.0 protocol to access both interactive applica-
tions (e.g., Excel file handling with repeatable mouse clicks
and keyboard strokes) and video playback (e.g., Windows
Media Player file handling for a repeatable video file content)
at the data center VDs.

The perfSONAR [17] capabilities for instrumentation-and-
measurement were leveraged in the parallel slice that com-
prised of dedicated measurement points at various sites as
shown in Figure 5. perfSONAR supports both active and
passive measurements of various network health metrics (e.g.,
one-way delay, TCP throughput, UDP throughput, loss, jitter,
router interface utilization) through support for tools such as
OWAMP, Iperf/ BWCTL, Cricket-SNMP and others. It sup-
ports measurement data collection, storage and publish/sub-
scribe of data archives of current and historic measurements
via standardized web services, and has been widely deployed
by over 100 user communities in industry and academia,
worldwide. We leverage perfSONAR active measurement tools
for cross-traffic load generation, and to augment load gener-
ated by concurrent thin-client connections on common paths.

The slice topology has multiple network paths with long and
short geographical distances between the thin-client sites and
data centers. As a result, the testbed is suitable to investigate
the use of OpenFlow for resource placement experiments (e.g.,
path selection, load balancing) as described in Algorithm 1,
involving multiple thin-clients connecting to the data centers
on diverse paths. We can see from Figure 5 how the testbed can
be used to form a congestion point at Atlanta for Wisconsin
thin-client flows, and how this congestion point can be avoided
by invoking Algorithm 1 steps to load balance the flows
through the Boston and Washington hops’ path.

In addition, we can note the use of our ‘marker packets’ sent
from the thin-client sites as part of non-IP traffic sessions in
the VDCloud experiment slice. We ensured that our OpenFlow
controller application implementation in conjunction with the
marker packets handler processed the marker packets and
related actions (as described in Section III) in the GENI infras-
tructure routers/switches at the hardware-level, as opposed to
at the software-level, where performance can be very slow.

Currently, most actions in OpenFlow controller application
implementations that pertain to Layer 2 headers, such as those
used in case of our marker packets, can be performed at
hardware-level in the GENI infrastructure routers/switches.
However, any controller application actions that involve ma-
nipulating IP headers are mostly done at the software-level.
Further, we remark that - before actual deployment in the
testbed, we recreated our slice topology in MiniNet [31]
and validated our controller application functionality with
simulated traffic.

V. VDCLOUD PERFORMANCE RESULTS IN GENI

In this section, we first describe the instrumentation-and-
measurement results to check the connectivity and setup-
correctness across the multi-domain GENI testbed. Next, we
present results to show how performance intelligence of Layer
2 OpenFlow path and Layer 3 Internet path can be used with
OpenFlow technology in the URB to improve VD application
performance. Lastly, we discuss the results implication and
suggest any issues that need to be addressed.

A. Connectivity Measurements

We used Rutgers thin-client site as an origination point
for the connectivity measurements using active measurement
tools in the testbed. We used ARPing tool for Layer 2 path
connectivity measurements, and IP Ping tool for Layer 3 path
connectivity measurements, respectively. The TCP throughput
measurements (or end-to-end available bandwidth measure-
ments) on the Layer 2 and Layer 3 paths were obtained using
the Iperf/ BWCTL tool in perfSONAR. Tables I and II show
the active measurement results averaged over 10 runs for the
Internet and OpenFlow paths, respectively.

As expected, the latency on the paths increases as the
geographical distance between the source and destination sites
increase. For example, latency from Rutgers to VMLab (both
source and destination sites are on the east coast of US) is
lesser than that of Rutgers to Stanford or Emulab (destination
sites are on the west coast of US). There are minor differences
in the latency and throughput measurements between the
Internet and OpenFlow paths, and the performance of the
OpenFlow path is marginally better in all the cases; more
packets can be sent and received on the OpenFlow path than
on the Internet path.

As an example to differentiate the route topology in order to
explain the performance differences between the Internet path
from the OpenFlow path, we can use the Figures 6 (a) and
(b) that show the intermediate hops on the two paths between
Rutgers thin-client site and VMLab data center site. Although
the network segments have common Internet Service Providers
(i.e., NJEDge, MAGPI, Internet2 and OARnet), the routing
in the OpenFlow path that we setup through the controller
application is configured differently on Layer 2 devices and
with lesser number of hops. Recall that the Rutgers edge
for the Internet path has multiple firewalls, and the related
network bandwidth resources are shared with other campus
core traffic, whereas there is a separate direct connection to the
NJEdge backbone at the Rutgers edge for the OpenFlow path.
In the following sub-section i.e., Section V-B, we show that
these differences in the OpenFlow and Internet paths notably
impact the VD performance for interactive and video playback
applications, and ultimately the VD user QoE.

To verify the performance isolation in the data plane span-
ning the two parallel slices of the testbed, we studied the im-
pact of scheduling our BWCTL tool throughput measurements



TABLE 1

ACTIVE MEASUREMENTS ON INTERNET PATH FROM RUTGERS SITE

Site Type Site Name Latency (ms) | Throughput (Mbps)
Data Center VMLab 24 415
Emulab 84 236
Wisconsin 36 346
Thin-client Stanford 86 223
Georgia Tech 56 284
TABLE II

ACTIVE MEASUREMENTS ON OPENFLOW PATH FROM RUTGERS SITE

Site Type Site Name Latency (ms) | Throughput (Mbps)
Data Center YMLab 23 434
Emulab 84 247
Wisconsin 34 362
Thin-client Stanford 84 236
Georgia Tech 55 305

Rutgers
Thin-client Site

Through NJEdge, MAGPI, Internet2, and OARnet Routers (L3) VMLab
(a)

Rutgers  Washington  Cleveland Columbus

Rutgers
Thin-client Site

Through NJEdge, MAGPI, Internet2, and OARnet Switches (L2) VMLab
Data Center Site

Fig. 6. (a) Internet Path Route; (b) OpenFlow Path Route
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Fig. 7. Impact of Throughput Measurement and Application Traffic
Scheduling

for gathering performance intelligence along the OpenFlow
path in conjunction with the application traffic. Figure 7 shows
how the end-to-end available bandwidth (normalized) along
the OpenFlow path is impacted when both the throughput mea-
surements and application traffic are scheduled concurrently.
Given the lack of performance isolation in the OpenFlow
path as seen from the impact, it is clear that the performance
intelligence gathering must be carefully orchestrated and reg-
ulated so that it can be used for intelligent resource placement
decisions, while not affecting the desired repeatability and
predictability in the performance of application traffic flows
in GENI experiments.

The advantage in using the controller application in the
OpenFlow path is that the global network view is available for
meta-scheduling of measurement and application traffic flows
on the shared distributed resources so that there is isolation in

the data plane. However, such meta-scheduling functionality
needs to be explicitly programmed in the controller application
because isolation of traffic within and between slices sharing
infrastructure components is not inherently handled by the
NOX network operating system [32]. Hence, if there are
two independently-developed controller applications that share
network segments, meta-scheduling should consider conflict-
detection and resolution by mechanisms such as sharing flow-
tables of common switches or using common switch ports
for forwarding traffic. The conflict-detection can be specified
to the controller application based on empirical results of
co-scheduling traffic that results in critical impact, such as
in our case shown in Figure 7 for measurement traffic and
application traffic. For cases where performance is impact
due to actual application loads, the controller application can
be programmed to automatically react to event triggers of
degraded performance for path switching and load balancing
as shown in the following sub-section i.e., Section V-B.

B. Application Performance Measurements

Figure 8 shows the performance comparison between the
Internet and OpenFlow paths as experienced by the VD
applications at VMLab being accessed by thin-clients at the
Rutgers site. As stated earlier, the VD applications we chose
in our experiments correspond to interactive applications (e.g.,
Excel file handling with repeatable mouse clicks and keyboard
strokes) and video playback (e.g., Windows Media Player
file handling for a repeatable video file content). We remark
that these two applications are representative of the broad
‘interactive’ and ‘streaming’ user QoE types, respectively.

We can observe that the interactive applications consume
more bandwidth and in turn take higher task time in the
Internet path, in comparison with the corresponding measure-
ments on the OpenFlow path. This suggests higher cross-
traffic congestion levels on the Internet path that cause more
effort on the user side in terms of mouse clicks and keyboard
strokes, and consequently higher number of packets being
sent and received. In the case of video playback, we can
observe that the video playback consumes more bandwidth,
and in turn provides higher video quality in the OpenFlow
path, in comparison with the corresponding measurements on
the Internet path. This suggests that there is more end-to-end
available bandwidth being observed at the media player client
on the OpenFlow path that consequently leads to a higher
resolution video encoding to be selected that has a higher



70
Hnternet Path % OpenFlow Path 59.6

60 -
X

:: 50 -
z

T a0 -
I3
8

T30
N
=

£ 20
1
=
-4

10 4

4 22
0
Interactive Application Video Playback
Fig. 8. Paths Performance Comparison

packet rate. Such a performance intelligence information if
available in real-time at the controller application during
can be used for path selection that ensures improved VD
application performance.

In addition, the VD application performance can be fur-
ther improved if the global network view and performance
intelligence of diverse OpenFlow paths can be leveraged at
the controller application in real-time to - for e.g., route
traffic around hot-spots or to react to faults such as link-
failures or Denial-of-Service cyber-attacks. By using suitable
triggers to recognize such human-and-network aware events,
load balancing through Algorithm 1 steps can be invoked.
Figure 9 shows how the interactive application and video
playback performance measurements show further improve-
ment at the Rutgers site by load balancing the thin-client
flows from Wisconsin by sending them through the Boston
and Washington hops’ path.

C. Discussion

It should be evident that the performance improvements
perceived in our limited GENI testbed scale of VD sessions
can be extrapolated to obtain much greater benefit in more
realistic VDC settings with VD requests on the order of
several hundreds. The performance intelligence data related
to human-and-network awareness, if collected effectively, can
greatly help in defining triggers that invoke OpenFlow actions
in intermediate switches that can cope with faults such as
link-failures or Denial-of-Service cyber-attacks. Given that
Future Internet infrastructures will rely on hypervisor and
software-defined networking technologies, our framework can
be generally implemented within slices of DaaS offerings
serving different user groups. In addition, the path performance
characteristics are likely to be more diverse, and thus our
optimization will notably improve the scalability of VDCs,
and will result in higher profit to CSPs or potentially cheaper
price per VD to DaaS users.

VI. CONCLUSION

The emergence of OpenFlow technology that is built
upon software-defined networking principles and supported
in several vendor switches provides new capabilities for pro-
grammable control of routing and other services (e.g., virtual
machine migration) for application flows. In this paper, we
leveraged these capabilities in a novel and intelligent resource
placement framework that uses human-and-network awareness
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(i.e., user group profiles and network health measurements)
for thin-client based VD delivery in VDCs. We showed how
special OpenFlow header ‘marker packets’ can be handled for
implementing: (a) “route setup” when handling non-IP traffic
within VLANs between thin-client sites and data centers,
(b) “path selection” and “load-balancing” of virtual desktop
flows to improve performance of interactive applications and
video playback, and to cope with faults such as link-failures
or Denial-of-Service cyber-attacks. From our framework im-
plementation and empirical results in a multi-domain GENI
testbed spanning backbone and access networks, we demon-
strated the importance of scheduling regulated measurements
that can be used for intelligent resource placement decisions.
Further, we showed the feasibility and benefits of using
OpenFlow controller applications for path selection and load
balancing between thin-client sites and data centers in VDCs.
Our planned future work involves developing a meta-
scheduler capability in OpenFlow controller applications to
derive performance intelligence without affecting application
traffic. We also are developing more comprehensive set of
VD application performance metrics that can be used in
OpenFlow-based load balancing triggers in VDCs.
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