
Explore ProtoGENI Security Problems From Experimentation*

Dawei Li, Xiaoyan Hong
Department of Computer Science

The University of Alabama
Tuscaloosa, Alabama, USA

dli11@crimson.ua.edu, hxy@cs.ua.edu

Abstract—ProtoGENI is a prototype implementation and
deployment of the Global Environment for Network Innovations
(GENI) which is a unique virtual laboratory for at-scale
networking experimentation exploring future Internets. The
successful development of ProtoGENI has to consider security
problems from the design and prototyping stages, such as
security communication and user authentication. However, in
many cases, security issues cannot be found until the real
experimentation. In this paper, we introduce some of our efforts
in exploring the security vulnerabilities in ProtoGENI from an
experimenter’s viewpoint. We also analyze the potential causes of
these problems. Some suggestions are given to improve the
ProtoGENI development.

Keywords-future internet; ProtoGENI; GENI; control framework;
virtualization; security

I. INTRODUCTION

What will be the Internet like in the future? It has been a
prevailing research issue since the current Internet has met
inevitable severe problems caused by its design defect for
scale expansion. Network Scientists have published many
papers on this open topic and some of the papers are rather
attractive theoretically. However, researchers are always
facing a challenging situation when they want to test their
ideas as there is not a currently available experiment
environment with an Internet scale which is an obstacle for the
future internet development.

The Global Environment for Network Innovations (GENI)
[2] is a proposed facility for at-scale networking
experimentation as a virtual laboratory. According to
expectation, GENI will be a huge network research testbed in
which abundant resources (PCs, routers, switchers, wireless
devices etc.) are geographically distributed. A GENI user can
try his ideas using this testbed with other researchers
simultaneously.

The development of GENI itself is a great challenge as it
comes up with interesting research areas of network science
and engineering. Up to now, four research clusters are
involved with different aims. ProtoGENI is the control
framework for “Cluster C” of the GENI effort led by Flux
research group at the University of Utah [3]. ProtoGENI is
mainly derived from their previous network testbed Emulab,

which gives researchers a wide range of environments to test
their systems. The control framework defines the policies of
user authentication, resource allocation and communication
among different parties.

Security is an important issue for the development of GENI
and ProtoGENI control framework which should be
considered at the beginning of the system design. Developers
from the University of Utah have already shown a well-
designed testbed with security communication channel and
user authentication. A working group from SPARTA Inc. [5]
is prototyping an Attributed–Based Access Control extensions
that allow different security mechanisms to share security
information within a single slice-based control framework and
eventually within federation of multiple control framework.
Another project from University of California, Davis [10] is
applying a distributed security sensor network to GENI.
Specifically, they will develop prototypes for security
monitoring, evaluating and reporting software that could be
useful to both GENI experimenters and GENI operations.

However, the experimenters or purposeful users of GENI
can experience different security risks or pose security threats
when vulnerabilities exist. A purposeful and meaningful
system security test is required for a deliverable and powerful
network research testbed. Some experiment efforts have been
reported in our GENI Spiral Two project [6]. In this paper, we
describe more experiments exploring a few possible security
weaknesses as an experimenter. We introduce the purpose of
our experiment and analyze the results. Possible suggestions
are given to improve the system. Despite the vulnerabilities we
experimented, the purpose of these experiments is to help
build a secure laboratory for network innovations. The
suggestions based on the experiments have been informed to
the development team. Noticeably, some issues that we study
here pertain to the current developing version. With the rapid
pace of ProtoGENI development, the security issues
mentioned in this paper could be solved.

The rest of the paper is organized as follows. Section II
gives brief background information and useful concepts of
ProtoGENI. Section III introduces our experiment tools.
Section IV presents our work investigating the interactions at
runtime with ProtoGENI control framework. In Section V, we

* This work is supported in part by BBN/NSF contract
project #1783.

detail our experiments inside the ProtoGENI resources
allocation. We explored the special security issues in wireless
experiment in Section VI. At last in Section VII, we conclude
this paper and discuss our future work.

II. PROTOGENI CONTROL FRAMEWORK

ProtoGENI is a prototype implementation and deployment
of GENI under development led by Flux research group at the
University of Utah [3]. There are some key concepts help to
understand the principles of how ProtoGENI and GENI work.

ClearingHouse (CH): Center for registration;
Component Manager (CM): Resource provider;
Slice: Container for resources;
Slice Authority (SA): Users pass a certificate to

authenticate themselves to register a slice;
Sliver: Computing resources granted to you inside of your

specified slice;
RSpec: Mechanism used for advertising, requesting and

describing the resources;
Vnode: User may wish to create a sliver on a shared node

which splits a physical node using virtualization. Current
ProtoGENI realize Vnode through OpenVZ.

All ProtoGENI authorities (CH, AM and SA) present an
XMLRPC interface [4] over HTTP and SSL. And all the user
requests are made via a URL register within the clearinghouse
for each of the services. A registered user can interact with
these XMLRPC servers using the python code provided by the
official ProtoGENI wiki site. The experiment can be created
with steps in Figure 1:

Figure 1. Steps for Experiment in ProtoGENI.

ProtoGENI allows only SSH login to the nodes the user
acquires through the above steps. Users have to upload their
SSH public keys to the slice authority. When trying to login to
a Vnode, user has to SSH to a correct port different from the

default port number 22 (the port number can be found in
manifest).

III. EXPERIMENT TOOLS

We use common network testing tools for our experiments,
for examples, ping and Iperf. Ping is a computer network tool
to test the reachability of a destination host and the round-trip
time by sending ICMP echo request packets and waiting for
the respond. Iperf is a popular network testing tool that can
create TCP and UDP data streams and measure the throughput
of a network. Iperf allow user to set various parameters to
meet the requirement of network testing. On the other hand,
these tools are also included in integrated instrumentation and
measurement services of GENI to experimenters [7][8].

For some of the experiments, we adopted “netwox”, an open
source tool to sniff and spoof network packets of all network
layers. The netwox includes a tool set and it uses different
numbers to represent different network tools.

In addition, we have developed several automated tools for
our experiments with Python. Those tools can be divided into
two parts.

A. RSpec Generating Tool

We can use this tool to generate RSpec of certain topology
types quickly. There are 4 types of topology can be created:
line topology, ring topology, arbitrary topology and random
topology. Nodes type can also be chosen as Vnodes or normal
nodes. User can also choose to install Iperf in the nodes on
demand.

B. Automated Experiment Tools

We developed two tools for automated experiment creation.
The first tool AuSlice.py can help user register multiple slices
at the same time. Another tool AuSliver.py can be used to
create slivers simultaneously on previously registered slices
using the AuSlice.py tool.

In the next two sections, we describe our experiments in two
categories: one is experimenter’s interaction with the control
framework. It usually involves using provided test scripts. The
other exploits the virtualization mechanism inside the
ProtoGENI where resource allocation is concerned.

IV. EXPERIMENTER’S RUNTIME INTERRACTION WITH
PROTOGENI CONTROL FRAMEWORK

When a user of ProtoGENI performs experiments, he needs
to use the python scripts provided by the developer to use the
APIs with XMLRPC over http and SSL (users could write
their own scripts with a language he prefers as long as it
supports XMPRPC). As is shown in the ProtoGENI tutorial
[4], a user follows a series of steps to do experiments with the
provided scripts. We analyzed these steps and also a few test
scripts, and performed related experiments to explore potential
vulnerability. One of the purposes is to find the weakness in

handshake procedure (like TCP SYN attack). The details are
described below with our findings.

A. Getting Ready Phase
SSL Certificate:

The test script will look for the SSL certificate and pass-
phrase in $HOME/.ssl/. For most of the users’ convenience at
this Spiral 2 phase, the code will save the certificate and pass-
phrase in $HOME/.ssl/ other than using a command line
argument.

Security issues of SSL Certificate: The location makes it
easier for being stolen or tampered with. If so, the attacker can
obtain all the authorities.
SSH Keys:

This is a step that could incur similar problems as to the
SSL certificates. SSH keys are also saved in local machine
with a well-known location. Potential problems see the
described on SSL certificates.

Security issues of SSH Keys: If stolen, attackers can access
to the experimental nodes being used by legal users. From
these nodes, more security attacks could be performed.

B. Using the Test Scripts Phase
Code Analysis:

For all the test scripts provided by the developer, they will
all execute the test-common.py file first. This file defines the
do_method which will be used by all other scripts to call the
XMLRPC server over http and SSL. This file also helps to
analysis the arguments in user’s commands. The file is the
core of all the scripts, so the attacker can just easily make
change to the test-common.py such as adding a joking print to
the code lines of printing “all the resources are busy, please try
later”. This will be an easy way to confuse the user.

Security issues: For the test-common.py code, once it is
changed can affect all the scripts.
Create Sliver:

We use our automated tool to perform possible DoS attack.
First we registered several slices with the AuSlice.py tool.
Then we create multiple slivers using AuSliver.py. The system
works well for experiment creation. However when multiple
slivers are created at the same time, the resources acquired for
the extra slivers (more than one) cannot be logged into with
SSH.

Possible problem: When multiple slivers are created, the
SSH public key may not be passed to the all resources
properly at the same time.

C. Flash Interface

ProtoGENI [4] now allow user to create slices and slivers
with a flash interface. An authenticated user can download
his/her SSL certificate from user profile page on the Utah
Emulab and save the certificate into the web browser. Then
the user can create experiment using the browser.

Security Issues: The flash interface really provides a
convenient way for researchers to do experiment with

ProtoGENI facilities. However, once the SSL certificate is
imported into the web browser, any user can do experiment
using this particular browser in the case that the owner of the
web browser (authenticated user) leaves the operating system
unlocked as there is no further identity check before a user can
get a full control as an authenticated ProtoGENI user.

Suggestions: The flash interface should provide a further
check of the users' identity before he can create a slice using
the interface immediately.

V. EXPERIMENTS WTH RESOURCE ALLOCATION

In experimentation, the security issues can also relate to the
ProtoGENI architectural building blocks in the virtualization.

A. Isolation of Slices

A slice provides the networked resources for an experiment.
Physically, one slice shares hardware with other slices through
virtualization. From control framework point of view, slices
are totally separated, isolated from each other. Each one is
contained. Control framework should not allow nodes
belonging to different slices communicate with each other
even though they are created by the same user. Our
experiment tries to test the isolation function of the control
framework.

Our first set of experiments has shown a case that cross-
slice communications is possible. After reporting the issue
(see also in our ExptsSec: S2.c document), and obtaining the
feedback on a bug fix for this issue, we conducted the same set
of experiments again for validation. Here we describe the two
sets of experiments.

A.1. Initial set of experiments
Experiment Setup:

In this experiment, three slices with slice names test1, test2
and test3 are created with the same topology of two Vnodes
and a link of bandwidth 100Mb/s as follows:

 shared1 ---- shared2
Tool Iperf is installed on both shared1 and shared 2. All the

resources acquired are summarized in TABEL I.

TABLE I. RESOURES OF THE SLICES

Node Name Slice Name Hostname Port Number
shared1 test1 pc175.emulab.net 32058
shared2 test1 pc172.emulab.net 32058
shared1 test2 pc172.emulab.net 32570
shared2 test2 pc175.emulab.net 32570
shared1 test3 pc263.emulab.net 33850
shared2 test3 pc102.emulab.net 33850

Experiment Steps:

First, only one Iperf server is running in slice test1 at the
node named shared1 with the command:

iperf –s

Second, at nodes shared2 of both slices test1 and test2, we
try to connect to the server shared1 with the following
command:

iperf –c shared1
Then we observed from the screen of the Iperf server

(shared1 at test1) that both of the clients connected to the
server even though they are not at the same slice, i.e. the nodes
can communicate across slices! In Figure 2, we illustrate our
experiment with the screen captures of the four nodes. The left
sides are the Iperf server and client in test1 and the right side
are those in test2. Figure 2 shows that the server shared1 in
test1 (slice1892) (the upper left terminal) is connected by
clients of ports in the sequence (numbers in the red circle):

43589, 53256, 53257, 43590

Figure 2. Cross-slice Communication for Test1 and Test2

The first client (shared2 in tests1 (slice1892) the left lower
terminal) connected to server with sequence (numbers in the
blue circle):

… 43589, 43590 …
The second client (shared2 in test2 (slice1893) the right

lower terminal) connected to server with ports of the sequence
(numbers in green circle):

… 53256, 53257…

However, it seems that the problem could due to the fact
that the two slices share the same physical resources (pc175
and pc172). So we performed the same experiment with test1
and test3. We obtained the same result as shown in Figure 3.

Further, we tried other possibilities including changing
Vnode to a normal node, connecting to the Iperf server with IP
address and using different node names for different slices (no
matter whether it is a Vnode or a normal node). The results
are summarized in TABLE II. It shows that there is only one
setting that the cross-slice communication can occur.

Figure 3. Cross-slice Communication for Test1 and Test3

TABLE II. CROSS-SLICE EXPERIMENTS RESULT

Vnodes or
Normal nodes

Iperf to the server
with node name or

IP address

Same node name
or different node

name

Result

Vnodes Node name Same name
Vnodes IP address Same name
Vnodes Node name Different name

Normal nodes Node name Same name
Normal nodes IP address Same name
Normal nodes Node name Different name

Experiment Analysis:

The result of this experiment shows that the cross-slice
communication can really happen under ProtoGENI control
framework when the nodes are Vnodes with the same node
name and Iperf to a server through the node name. This may
be caused by the control framework implementation of
Vnodes and the mapping of the names. And the way for
encapsulating the shared Vnode has a potential drawback.

A.2. Reexamination set of experiments
Based on our experiment report, the developer team at The

University of Utah has fixed the issue described in previous
subsection.

We have recently re-examined this cross-slice traffic issue.
We found that the previous problem has been solved. We
conducted the same experiment for verification. The
experiment setup is summarized in TABLE III.

Reexamine Steps:

We reexamined both scenarios appeared in the cross-slice
experiment.

TABLE III. RESOURCES OF REEXAMINE

Node
Name

Slice
Name

Hostname Port Number

shared1 test1 pc459.emulab.net 38714
shared2 test1 pc511.emulab.net 38714
shared1 test2 pc413.emulab.net 38970
shared2 test2 pc510.emulab.net 38970
shared1 test3 pc511.emulab.net 43578
shared2 test3 pc459.emulab.net 43578

1. Slices share different physical resources

From TABLE III, we can see that the slice test1
(pc459.emulab.net and pc511.emulab.net) and slice test2
(pc413.emulab.net and pc510.emulab.net) belonged to
different physical nodes. So in shared1 of slice test1, we ran
the iperf server; in shared2 of slice test2, we ran the iperf
client to connect iperf server shared1. The result is in the
following figure.

We can see from this figure that there is no traffic from

shared2 in slice test2 to shared1 in slice test1.

2. Slices share the same physical resources

From TABLE III, it is obviously that nodes in slice test1
and in slice test3 belonged to the same physical nodes:
pc459.emulab.net and pc511.emulab.net. So in shared1 of
slice test1, we ran the iperf server; in shared2 of slice test3, we
ran the iperf client to connect iperf server shared1. The result
is in the Figure below:

Still in this figure, there is no traffic or packet can be send
from shared2 to the iperf server in a different even they are in
the same physical node!

Thus, in both cases, be it using shared nodes or not, we
validated that the cross-slice traffic does not appear.

B. Nonexclusive use of resources

ProtoGENI user can specify a bandwidth of the link
between two nodes. However the link between two Vnodes
(sharing the same physical node) is in fact using a loopback
(bridged) method as mentioned in [1]. So the link between two
Vnodes or link between a Vnode and a normal node may
reveal different performance characters.
Experiment Setup:

This experiment has two Vnodes and one normal node with
following topology:

 shared1 ---- shared2 ---- geni0
The node shared1 (hostname: pc102.emulab.net & port

number 31290) and shared2 (hostname: pc263.emulab.net &
port number 31290) are Vnodes and geni0 (hostname:
pc204.emulab.net & port number 22 as default SSH port
number) is a normal node. The link bandwidth between the
Vnodes and between shared 2 and geni0 are both 100Mb/s.
Experiment Steps:

First, we try to ping from shared1 to shared2 and from
shared2 to shared1. We have the following result as shown in
Figure 4 and Figure 5. The two results show that the delay
variances are obvious.

Figure 4. Ping From shared1 to shared2

Figure 5. Ping From shared2 to shared1

Then we ping from shared2 to geni0 and from geni0 to
shared2. The results are given in Figure 6 and Figure 7. Figure
6 shows that the delay variances from a Vnode to a normal
node are mostly small. The initial long delay exists in the
many repeated experiments.

Experiment Analysis:

From the results of this experiment we see that when
pinging from a normal node to a Vnode or ping between
Vnodes, the round-trip time is not stable. This may indicate
that the network is not reliable enough for a real network
experiment.

Suggestions: the large delay variance at the Vnodes may be
because of the current virtualization technology OpenVZ that
ProtoGENI is using. Developers may consider further
potential defects when applying to a large scale system.

C. Network Stability and Stress Test
This consideration relate to network quality. Unwanted
network quality will be a potential problem that affects
experiment results which may as severe as security problems.
We perform stress tests to see if the recourse usage is confined
to its specification, to see if other sliver creations could be
affected. The software Iperf (version 2.08) is equipped with
some parameters to test network stability and for stress test.
Experiment Setup:

In the experiment, we create a sliver with a topology:
geni1 ---- geni2 ---- geni3

Iperf is installed at geni1 and geni3.

Figure 6. Ping From shared2 to geni0

Figure 7. Ping From geni0 to shared2

Experiment Steps:

First, we ran the command iperf –s in geni1 to start the
server.

Then we ran the command iperf -c geni1 -t 120 -i 10 in
geni3 to connect to the server geni1. Here the transmission
time is set to 120s and interval to 10s. The default window
size is 16KB for TCP. Result is given in Figure 8. The result

shows that the transmission rate is stable at around 94.0
Mbits/sec.

Further we add the -P * option of Iperf to the above
experiment. -P * is used to simulate * multi-threads to
connect the server. We used window size 128k. The result
shows that the network works well for as many as possible
threads connecting the server together. (The default maximum
upper bound is 253 threads, and when the * is raised to 254, it
will return a thread creation failure).
Experiment Analysis:

In the Iperf client, the Linux terminal will show the
transmission rate of each thread and the total rate of all the
threads. As the number of threads increases, the transmission
rate of each thread decreases, but the total rate keeps stable for
a rate of around 94.0 Mbits/sec.

From these results, we can see that the network under
ProtoGENI control framework performs correctly in
separating the network traffic flows when we use Iperf to test
it. So the network quality here will not be an obstacle for
researchers to carry out their experiments.

VI. EXPERIMENTS WITH WIRELESS TESTBED

Different from experiments of wired connection from an
experimenter in GENI, the open nature wireless media makes
it easier for one experimenter to intervene others’ experiments.
Though security and privacy policies are clearly given to the
experimenters, however, to an uninformed user or a purposeful
user, the listed policy items are vulnerabilities.

A. Packet Sniff

The attacker who has a wireless node in ProtoGENI can
easily sniff a packet in the air from other wireless experiments
with netwox. With the sniffed packet, attackers will get
enough network information of both the sender and receiver
such as IP address and MAC address which can be used to
launch network attack.
Experiment Setup:

In this experiment, two slices with slice names
experiment1 and experiment2 are created with the same
topology of two wireless nodes with 802.11g standard:

 nodew1 ---- nodew2
For experiment1, we have pc39 for nodew1 and pc28 for

nodew2. For experiment2, we have pc35 for nodew1 and pc27
for nodew2.

The four nodes are located in the following physical
positions (Figure 8).

Iperf is installed in both nodes of experiment1. “netwox” is
installed in nodew1 of experiment2 which is pc35 in the
above. Both of the experiments choose channel 14.

Figure 8. Physical Location

Experiment Steps:
First, we have iperf server running on nodew2 of

experiment1 and iperf client running on nodew1 of the same
slice to connect the iperf server.

Then, we use the No. 7 tool of netwox to sniff the TCP
packet of the communication in experiment1. So in nodew1 of
experiment2, the following command is used to sniff the TCP
packet of the open air:

netwox 7 –d ath0 –t
The “ath0” is the wireless interface used for sniffing and “-

t” is used to sniff TCP packet. The packet sniffed is shown in
Figure 9.

Figure 9. TCP Packet Sniffed

Experiment Analysis:
In this sniffed packet, we get all the network information of

both server and client which can be used to perform network
attack.

Packet sniff can only be performed when both experiments
are using the same channel. However, it is easy to find out
which channel is being used by other experiments from
Emulab website:

Figure 10. Channels in Use

B. ARP Cache Poisoning

With the sniffed packet, we can get both mac address and ip
address of both nodes. So it is easy for us to launch the arp
cache poisoning with netwox tool No. 33.
Experiment Setup:

In this experiment, we have the same experiment scenario
with packet sniff just with different physical nodes.

For experiment1, we have pc39 for nodew1 and pc28 for
nodew2. For experiment2, we have pc35 for nodew1 and pc27
for nodew2. Netwox is installed in nodew1 of experiment2.
Experiment Steps:

First, we “ping” from nodew2 to nodew1 in experiment1.
Then, we use the No. 7 tool of netwox to sniff the packet of

the communication in experiment1. So in nodew1 of
experiment2, the following command is used:

netwox 7 –d ath0
The packet sniffed is shown in Figure 11.

Figure 11. “Ping” Packet Sniffed

Then we check the ARP table in nodew1 of experiment1:

Figure 12. ARP Cache before Attack

We use the following command to launch attack:

Figure 13. Launch ARP Cache Poisoning

We check the ARP table again:

Figure 14. ARP Cache after Attack

The ARP table is successfully modified.
Experiment Analysis:

In a sniffed packet, attacker can get the IP address and
corresponding MAC address. With this information, attacker
can easily do an ARP cache poison attack. The victim is just
“innocent”.

C. SYN Flooding

We can use “netwox” to perform a syn flooding attack. The
following netwox command can be used:

netwox 76 –i “10.1.1.3” –p 20

The “-i” is the ip address to attack and “-p” is the port
number to attack.

In nodew2 of experiment 1, we use the “netstat –na” to
check the current TCP connection status:

We see that some ports are listening and others are

established. Then we execute the netwox command and check
the tcp status again:

We see that the attack is not successful. This is because

most of the Linux operating system has a tcp_mechanism to
defense this attack.

However, another interested issue was found here when
performing the syn flooding attack. Again, we run iperf server
in nodew2 of experiment1 and iperf client in nodew1 to
connect the iperf server. Before we run netwox command:

The throughput showed here is around 26Mbits/sec. Then

we run the netwox command:

netwox 76 –i “10.1.1.3” –p 20

We get the following result:

The throughput is decreased to around 16Mbits/sec. Here

we may think that the throughput is affected because the two
experiments are using the same communication channel. Then
we run the netwox command:

netwox 76 –i “10.1.1.4” –p 20

The “10.1.1.4” does not exist in the network topology. We
get the following result:

The throughput is then increase back to around

26Mbits/sec. We can think the attack is successful not because
of the experiments are using the same channel. Further we
change the communication channel or experiment 2 to channel
4:

Then we perform the syn flooding attack again, as we can

predict, the attack can still decrease the throughput.

Experiment Analysis:
The syn flooding cannot success in attacking the tcp

connection directly because most of the Linux operating
system has a tcp_mechanism to defense this attack However, it
is still possible to use the sniffed IP address to attack another
experiment and decrease the throughput even the attacker is
using a different channel. The victim is just “innocent”.

D. Resource Scramble
When experimenters want to use some particular resources,

the control framework provides a way to discover the
resource. In ProtoGENI, user can use XMLRPC to call the
resource discover API to find out what resources are available.

Figure 15. ProtoGENI Network Stability Test

For wireless experiments, users can check the floormap of
all the wireless nodes to find the free wireless nodes and
choose the nodes wanted. However, this mechanism has a
significant drawback especially for the wireless that when
users find the nodes he wants, he cannot reserve the nodes in

time. The user still has to change their RSpec to request the
particular nodes. However, at this time the nodes they wanted
may already be taken by other users especially that the
wireless nodes may be requested by other users (wired
topology) with a random resource request even without their
“fault”.

What is more, when users want to do multiple wireless
experiments, they may want to have nodes at particular area.
However, user needs to request these resources of different
experiments separately, which may give the attacker a chance
to perform the “resource scramble”.

Figure 16. Wireless Nodes Floormap

As shown in the above picture, the user may need pc16 and
pc2 for experiment 1; pc5 and pc6 for experiment 2. When the
attacker finds someone already reserved pc16 and pc2, he can
request pc5 and pc6 on purpose so that the experimenter
cannot continue the experiment as the nodes he wanted are no
more existing.

Suggestions: When a user wants to reserve some nodes, the
ProtoGENI should provide a way to do it on-the-fly in order to
avoid later conflicts. This will save the users effort and
increase the users’ efficiency.

VII. SUMMARY

The work presented in this paper reports our analysis for
potential security vulnerability in ProtoGENI from
experimentations. We presented our experimentations and
analysis in three aspects: runtime interaction with control
framework, experiments with ProtoGENI resource allocations
using virtualization, and security issues in wireless
experiments. We provided a few suggestions according to the
results for possible improvements on ProtoGENI security.

Our future work will explore security problems based on
investigations through ProtoGENI experiments on at least two
aggregates. We will also install our local component manager
and analyze security behaviors related to CM. For wireless
experiments, we will explore more when security mechanisms
such as WPA/WPA2 are applied.

REFERENCES
[1] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K.

Webb, and J. Lepreau. “Large-scale Virtualization in the Emulab
Network Testbed.” In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2008.

[2] “GENI Global Environment for Network Innovations Spiral 2
Overview”,http://groups.geni.net/geni/attachment/wiki/SpiralTwo/GENI
S2Ovrvw060310.pdf.

[3] “GENI Global Environment for Network Innovations Spiral 2 Security
Plan”, http://groups.geni.net/geni/wiki/SpiralTwoSecurityPlans.

[4] “ProtoGENI wiki page”, http://www.protogeni.net/trac/protogeni.
[5] S. Schwab, “GENI Spiral Two Project: Distributed Identity and

Authorization Mechanisms”, http://groups.geni.net/geni/wiki/ABAC.

[6] X. Hong, F. Hu, Y. Xiao. “GENI Spiral Two Project: GENI Experiments
for Traffic Capture Capabilities and Security Requirement Analysis”,
http://groups.geni.net/geni/wiki/ExptsSecurityAnalysis.

[7] INSTOOLS, http://groups.geni.net/geni/wiki/InstrumentationTools.
[8] OnTimeMeasure,http://groups.geni.net/geni/wiki/OnTimeMeasur.
[9] W. Du, T. Daniels, N. Gaubatz, P. Ning, G. Spafford. SEED Project

http://www.cis.syr.edu/~wedu/seed/.
[10] S. Peisert. “GENI Spiral Two Project: The Hive Mind: Applying a

Distributed Security Sensor Network to GENI “,
http://groups.geni.net/geni/wiki/HiveMind

