
1783 Milestone ExptsSec: S4.d

University of Alabama, Tuscaloosa, AL 35487
Xiaoyan Hong, Fei Hu, Yang Xiao, Bo Fu, Zhifeng Xiao, Songqing Yue

Sept 23, 2012

This document describes our work for milestone ExptsSec: S4.d. Work presented includes
suggestions on simplifying key management based on issues identified in ExptsSec: S4.c,
and further security analysis on access control.

1. Suggestions on Simplifying Key Management

In our previous report, analysis on the key management and usage are presented (see report per
1783 Milestone ExptsSec: S4.c). Issues are identified in two areas, namely, the management of
multiple SSH keys and the SSH tools for remote login. Per these areas, we give suggestions to
improve user experiences.

1.1 Investigation on the Management of Multiple SSH Keys

In 1783 S4.c report, we found that “the current management of multiple private keys can result
in the inconstancy of the keys distributed at different nodes, also, the potentially unnecessarily
holding of outdated keys”.

Our suggestions based on the current implementation of key management in ProtoGENI are

given below. The first suggestion is: When a new SSH key pair is generated, to the resources
that were allocated before this key generation, the newly created public key will be uploaded.
Thus, the corresponding paired new private key can be used to ssh to all resources owned by the
user.

The second suggestion is: For a user account, only the latest generated key pair is kept valid.
Whenever there are new resources allocated, the single valid public key is uploaded to all

allocated resources and users can only use the latest private key to ssh to all allocated resources.
A timestamp and a “time out” period for each key could be added as an addition in dealing with
this key update issue. Its usage can be separate from the expiration of the certificate that the user
has.

Another way can be for the cleaning house to recognize a key being contaminated and to remove

it completely.

1.2 Investigation on Remote Login Tools to GENI Nodes

In the 1783 S4.c report, we found that “it could be uneasy for users who login to GENI resources
across multiple GENI interfaces (such as Flack, ProtoGeni and Omni) and use built-in SSH tools
in various operating systems. In addition, for FLACK, the browsers (tested Explore and Firefox)

were not the cause of the not-working “Visit button” and “SSH button”, but operating systems
were.”

Suggestions: In order to simplify the use of GENI, we highly recommend to develop an easy-to-
use ssh tool, and to release it with ProtoGeni or Omni, especially for users of Windows and other
systems other than Linux and Mac. As to Flack, it will be desirable that the “Visit button” and
the “SSH button” can work well in all operating systems.

2. GENI Authentication

We studied and investigated the access contorl mechanisms for Global Environment Network
Innovation (GENI).

We studied and investigated the access control mechanisms employed by GENI projects. For

access control, RBAC is the current mainstream. ABAC, however, is considered to be the future

authorization policy due to its fine-grained control and high flexibility. We provide a few

suggestions as follows:

Human-Robot distinguisher: Each GENI project offers a web portal through which the basic

experiment management can be done. Some operations, such as editing personal/experiment

information, are harmless and inoffensive. Other operations, however, could be offensive to the

system. For example, a malicious experimenter may employ a robot to continuously request a

resource from the aggregate manager until all of the resources are used up. These legal requests

are sent through the web portal; so, the aggregate manager will not detect an anomaly. The

consequence is that the malicious user keeps occupying the resource, which will never really be

released. In order to distinguish a human from a robot, it is essential to perform a challenge-

response test on the user for each suspicious operation. For example, if a user makes a request

for resources immediately after the last owned resource is reclaimed, then a test can be

conducted. One of the well-known human-robot distinguishers is CAPTCHA , which intends to

generate challenges that 1) are easy enough for a human to solve and 2) can prevent software

robots from filling out an online form. With the combination of a human-robot distinguisher and

a limitation policy of resource usage, GENI is able to prevent resource abuse.

