Milestone DigitalObjectRegistry: Security requirements for
implementing Clearinghouse and Registry Services.

1. Introduction

The Registry design, submitted to meet our first milestone (May 12, 2009), will be
implemented and deployed over the public Internet within the next few months.
The Registry will be used to federate clearinghouses, and other relevant data, across
all the clusters. We will start by providing access to the ProtoGENI clearinghouse
information, adding additional GENI clusters and projects as we gain access to them,
and get cooperation from the relevant groups. This document highlights the security
requirements we believe are important for this federation process.

2. Security Study

The well-known security requirements for any network-based system, including
ours, are as significant here as elsewhere. These requirements include issues such as
ensuring message integrity and confidentiality, dealing with DoS attacks, and
keeping accurate traffic logs for auditing purposes. To be successful as an
experimental and prototyping infrastructure, the GENI environment must be trusted
and reliable. Experiments must be repeatable, so the state conditions must be well
known and must exclude any unwanted interference, both malevolent and
unintentional. However, for federation in the GENI environment our primary
concerns are the trust model, distributed authentication, user autonomy, and
privilege revocations.

The standard PKI model, where the authenticating server matches a client’s private
key with the published public key of the user without actually having the client pass
the private key to the server, is widely adopted for authentication and session
encryption purposes. This authentication model is almost always augmented with a
trust model. An endorser (aka issuer), who knows about the client (a user), certifies
the user’s public key and other user related information by signing, encrypting the
data to be signed with endorsers private key. The user’s public key, other user
information, signature, and the issuer information are captured in a byte stream
known as a digital certificate for the user. As part of the authentication process,
servers process the client’s digital certificate and may approve or reject the request
based not only on the matching keys, but also on the trust the server has in the
issuer of the client certificate. That is, trust is assumed to be transitive. This
assumption, if applicable to a given system, allows servers to trust unknown clients
if the servers trust the issuers of those client certificates.

There are several management issues in this model. For servers to trust clients
based in part on certificates, servers will have to know, and manage their trust in,
the certificate chains. Additionally, if a client or an issuer turns rogue, then all the



systems need to be notified to remove the rogue certificate from their trust store.
There is usually lag time in this process, and the delay could compromise the
security of the system very quickly. All servers, even those belonging to a single
large distributed system, need to manage their own trust store. Managing a set of
certificates, keeping that set up to date across multiple servers is a very big
challenge, especially in a project as large as GENI.

3. Proposed Security Requirements

We propose using the Handle System (Sun, Lannom, & Boesch, 2003) (Sun, Reilly, &
Lannom, 2003) (Sun, Reilly, Lannom, & Petrone, 2003) to offset the challenges that
exist in the current PKI and trust model. Handles are of the form <prefix> / <suffix>
(CNRI, 2008). Each organization in our recommended model will have its own prefix
and have administrative permission for the handles under that prefix. In the
recommended model, any given user certificate will include the handle assigned to
the user. When, and if, such certificates are created, a handle is also generated and
associated with relevant information, including the public key, of the user by the
appropriate administrative agency. Any server processing a client’s request would
adhere to the following processing model:

* (lient forwards its certificate to the server as part of a request

* Server retrieves the handle identifier from the certificate

e If the handle belongs to the set of prefixes assigned to GENI, then the server
resolves (CNRI, 2006) the handle and gets the client’s public key

* Server matches the client’s private key with this public key

If matched, the client is authenticated and trusted. The fact that the handle belongs
to a prefix allotted for GENI organizations implies that the handle belongs to a valid
GENI space. The administrative rights of the prefix are fixed in such a way that only
appropriate agencies can create handles under that prefix. In the case of user
handles, the employer organization may be the only authority permitted to create
the user handles. The same approach could be applied at the organizational handle
level, e.g., cluster handle creation would be restricted to the GPO. This constraint on
handle administration ensures that if the client’s key matches the public key in the
handle, and the handle belongs to the GENI prefix space, the user can be trusted.

This approach relieves the servers from maintaining their trust store and requires
only that they know the range or “set” of prefixes that can be trusted. The handle-
based approach, however, does not preclude the use of certification authorities and
chains of trust in the normal sense. The client certificates may still be nested within
an organizational certificate, which in turn is nested in the responsible cluster
organization’s certificate and so on up to, in this case, the GPO. The chain of
certificates need not be maintained at each server. Any server may instead simply
resolve the handle specified in the certificate and verify that the handle belongs to
the set of prefixes, and that the keys in the handle match the keys in the certificate.

To simplify management of the prefix set for the servers, the prefixes could be



packaged together. In the existing GENI setup, there is the GENI program office
(GPO), there are clusters under the GPO, there are organizations within those
clusters, and so on. For example, prefix 45678 could be assigned to the GPO; prefixes
45678.1, 45678.2, etc., could be assigned to clusters, prefixes 45678.1.1, 45678.1.2,
etc., could be assigned to organizations participating in cluster 1, and so on. Prefixes
assigned in this manner allow servers to trust handles belonging to a prefix that
begins with 45678 without having to worry about managing a list of prefixes. A
similar setup is used for the organizations using the ADL Registry, a US DoD registry
that facilitates the reuse of learning and training materials for the military. It is
important to note that prefixes created in this manner are no different than the
prefixes that do not follow the dot-separated scheme. As always, the administrative
privileges can still be held at the prefix level and/or the individual handle level, with
no change to handle resolution. A GENI-wide registry/clearinghouse may hold a
global trust policy with the corresponding prefix, 45678 in this example, or the set
of prefixes, for servers to trust. This is one of the GPO's objectives - to put global
policy at the clearinghouse level. However, there may be cases where individual
servers have more restrictive policies than the GPO requires. For example, a server
might decide to only trust users from two specific organizations. In those cases the
server may be configured to maintain the list of handle prefixes for the trusted
organization, perhaps in the form of a local policy held in a local clearinghouse.

Privilege revocations can easily be achieved by having the responsible organization
delete the public key from the (rogue) user handle record, or by deleting the entire
handle record, and any subsequent attempts by the rogue user to get authenticated
by any GENI server would fail because the server would not be able to resolve the
rogue user’s handle to acquire the public key to match the corresponding private
key the user claims to have during a PKI challenge-response sequence. All servers
are synchronized with any revocation (deletion of handles) without actually having
to manage any trust store, and the revocation is immediately effective.

In cases where an entire organization is categorized as rogue, the prefix for that
organization (along with its handles) can easily be removed from the Handle
System. Any handle resolution attempt, (comparable to a DNS resolution (CNRI,
2006)) by a handle client begins with a request to the Global Handle Registry®
(GHR) (equivalent to DNS top level servers, com, net, etc.) to obtain the network
location of the handle server responsible for that handle. Using the setup of prefixes
from our earlier example, with the rogue organization running a handle server for
the prefix 45678.1.1, response to requests for handles under the prefix the
45678.1.1 prefix can be denied at the GHR. This means that any subsequent
resolution requests for those handles made by the servers, integrated with a handle
client, will result in a HTTP 404 equivalent error. Failure to resolve a user handle by
a server implies an authentication/trust failure. The revocation is effective
immediately without the servers updating their trust store.

There are two latency issues. The first, which will not be addressed at this time, is
the amount of time required to determine that a user or organization went rogue



and take the appropriate action. The second is caching; that is, clients cache handle
records and have a time-to-live (TTL) period. To deal with this issue, it is necessary
to bring the TTL to appropriate level, or make handle clients always perform
authoritative requests which ignore the caching and ensure that any handles
deleted from the system are not treated as valid due to caching. In any case, the fact
that the user handles must exist with the right public key ensures explicit trust
capability quite easily when compared with the signature approach practiced
commonly and described above.

Other security issues such as spoofing and man-in-the-middle attacks are also
addressed by our implementation. Since it is required (and ensured during the
authentication stage) for a user claiming a certain handle to have the private key
that matches the public key for that handle that is stored in the handle server,
authentication servers will know when a user creates a spoof certificate with a valid
handle identifier embedded in the certificate; the public key generated by the spoof
user could not have been associated with the claimed handle in the handle server
managed by some (valid) GENI organization.

To deal with man-in-the-middle attacks, handle clients can request that the handle
servers sign the resolution responses with the servers’ private keys. A client can
verify the server’s signature by first getting the server’s public key from the GHR
and making sure the signature is made by the claimed server. A client can trust, after
verifying, the response from the GHR because that response is signed by the GHR’s
private key, the public key of which may be accessed out-of-band. Out-of-band
methods for getting the GHR’s public key are currently being formalized.

Finally, handles also provide a way to store user credential information along with
the trust and authentication information (CNRI, 2007). Storing the related
information at one place brings cohesiveness to the system, thereby easing the
management of those information items.

4. Clearinghouse Security Implementation

In our Federated Clearinghouse implementation, handle prefixes will be assigned to
organizations as outlined above, and handles will be created for users from those
organizations. The handle records will contain the users’ public keys and credential
information. The user certificates will store the handle identifier. To incorporate
existing users at ProtoGENI, the gid stored in ProtoGENI user certificates will be
used to compute the appropriate handle to assign to the users. Thus, when the
Registry encounters certificates with no handles it can use a deterministic
computation to identify the handle.

The Registry will implement an SSL interface, and any client requests will first be
authenticated and trusted. If the client is not authenticated or trusted, the
connection is broken. If the client is authenticated and trusted, then the Registry
application layer will process the request and will use the credential information
stored in the user handle to proceed further with the request. The process flow is
authenticate->trust->authorize->process.



Initially, CNRI will provide the hosting and administration of those handles, but later
on, depending on our involvement with GENI, those handles would be migrated to
corresponding organizations to manage, along with their handle servers. When
migration occurs, our system may be comparable to systems such as Shibboleth,
where servers maintain user records and authentication parties may rely on those
Shibboleth servers. The distinction between Shibboleth and the Handle System is
that the Handle System allows administration at the single user record (handle
record) level. For example, users themselves, in addition to the organizations, may
manage their own profiles, credentials, etc. (Allowing individuals to manage their
profiles is a feature that OpenID systems are providing.) The uniqueness of the
Handle System, which is infrastructural at it's core, is that it can be customized to
build a wide range of applications systems.

5. Conclusion

The Handle System adds many advantages to the widely used PKI model. Relieving
the servers from maintaining their trust store and keeping the store in sync, by
harnessing the scalability (CNRI, 2006) and distributed nature (CNRI, 2007) of the
Handle System, would be a very practical solution to the security challenges the
GENI system is currently facing.

6. References

CNRI. (2006). Handle Resolution. Retrieved from The Handle System:
http://www.handle.net/overviews/overview.html

CNRI. (2008). Handle Syntax. Retrieved from The Handle System:
http://www.handle.net/overviews/handle-syntax.html

CNRI. (2007). Handle Value Types. Retrieved from The Handle System:
http://www.handle.net/overviews/types.html

CNRI. (2006). The Handle System and the DNS. Retrieved from The Handle System:
http://www.handle.net/overviews/dns.html

CNRI. (2007). The Handle System Architecture. Retrieved from The Handle System:
http://www.handle.net/overviews/architecture.html

CNRI. (2006). The Handle System Scalability. Retrieved from The Handle System:
http://www.handle.net/scalability.html

Sun, S., Lannom, L., & Boesch, B. (2003). RFC 3650.
Sun, S., Reilly, S., & Lannom, L. (2003). RFC 3651.
Sun, S., Reilly, S., Lannom, L., & Petrone, J. (2003). RFC 3652.



