
G E N I
Global Environment for Network Innovations

RBAC Requirements for ProtoGENI
Spiral 1 Draft 0.5

Document ID: GENI-RBAC-REQ-0.5

January 15th, 2010

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 2 of 20

Prepared by:
Jay Jacobs, Alefiya Hussain, and Stephen Schwab

SPARTA, Inc.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 3 of 20

Table of Contents

1. Document Scope ... 4
1.1 Purpose .. 4
1.2 Related Documents ... 5

2. Access Control .. 6
2.1 Identity .. 6
2.2 Authentication ... 7
2.3 Authorization... 7
2.4 ABAC Credentials.. 8
2.5 Trust Negotiation... 10

2.5.1 Trust Targets .. 10
2.5.2 Access Control Policy .. 10
2.5.3 Acknowledgement Policy .. 11

3. ProtoGENI... 11
3.1 Current Access Controls ... 11

3.1.1 Control Framework .. 11
3.1.2 Clearinghouse... 15

3.2 ProtoGENI Attributes.. 16
3.2.1 Control Framework Policies .. 17
3.2.2 Clearinghouse... 17

4. Attribute Extension Requirements .. 18
4.1 Decision Points.. 18
4.2 Credentials... 18
4.3 Discovery .. 18
4.4 Revocation... 19
4.5 Policy Features .. 19

Appendix A: ABAC Web Service (WS-ABAC) .. 20

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 4 of 20

1. Document Scope

This document is entitled RBAC Requirements for ProtoGENI. It is a draft, intended to
be a living document more in the spirit of an IETF Internet Draft rather than a Request
For Comments (RFC) document that defines a protocol or standard. Over the course of
development and prototyping spirals, this document will track and define the
requirements for the use of role-based access control, as embodied by SPARTA’s
Attribute Based Access Control (ABAC) technology, primarily in the context of the
control framework and slice-based facility architecture. As a reader or developer, your
comments, criticisms and suggestions are welcome and essential to progress.

1.1 Purpose

The purpose of this document is to define the requirements for Attributed-Based Access
Control (ABAC) extensions that allow the distinct security mechanisms of the various
control frameworks to share security information within a single control framework, as
well as with each other, starting with ProtoGENI and proceeding to ORBIT and ORCA in
future years according to their integration readiness. The extensions will support trust
management functions, including identity definitions and authentication mechanisms, and
distributed authorization and access control mechanisms.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 5 of 20

1.2 Related Documents
Some of the material in this document is drawn from the following documents listed
below.
Document ID Document Title and Issue Date
GENI-SEC-
ARCH-0.55

“GENI Security Architecture”, July 31, 2009

RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, April 2002
http://www.ietf.org/rfc/rfc3280.txt

RFC 3281 An Internet Attribute Certificate Profile for Authorization, April 2002
http://www.ietf.org/rfc/rfc3281.txt

N/A DETER Federation Daemon (fedd)
http://fedd.isi.deterlab.net/

N/A Access Control for Federation of Emulab-based Network Testbeds, Ted
Faber and John Wroclawski, In Proceedings of the CyberSecurity
Experimentation and Test (CSET) Workshop, San Jose, (July 2008)
http://www.usenix.org/events/cset08/tech/full_papers/faber/faber.pdf

N/A A DETER Federation Architecture, Ted Faber, John Wroclawski, Kevin
Lahey, Proceedings of the DETER Community Workshop on Cyber
Security Experimentation and Test, Boston, MA, (August 2007).
http://www.usenix.org/events/deter07/tech/full_papers/faber/faber.pdf

WJ03a Automated Trust Negotiation Technology with Attribute-based Access
Control, W. Winsborough and J. Jacobs, In Proceedings of the DARPA
Information Survivability Conference and Exposition, 2003, Vol. 2 pp 60-
62, April 22-24, 2003.

GROUPS Project Groups
http://users.emulab.net/trac/emulab/wiki/Groups

LMW02 Ninghui Li, John C. Mitchell, and William H. Winsborough.
Design of a role-based trust management framework. In Proceedings of the
2002 IEEE Symposiumon Security and Privacy. IEEE Computer Society
Press, May 2002.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 6 of 20

2. Access Control

In a computing environment, trust management can answer questions regarding whether a
process or application can perform an operation in a given situation. Before the
introduction of Role-Based Access Control (RBAC), users, resources, and permissions
needed to be enumerated explicitly, often in a cumbersome and error-prone manner.
While early RBAC implementations avoid the need for explicit permissions to be
assigned, strict hierarchical structures of resources, operations, and users were required.
Designed specifically for heterogeneous, distributed computing environment, Attribute-
based Access Control (ABAC) extends RBAC with the following features: decentralized
attributes, delegation of attribute authority, inference of attributes, and attribute
delegation of attribute authority. ABAC provides policy for sensitivity of credentials and
allows organizations to maintain their own autonomy while still collaborating efficiently.
Furthermore, ABAC provides an auditable, automated trust negotiation, where that
capability is required.

2.1 Identity

Identity is defined as who someone or what something is, for example, the name by
which something is known. Traditionally, identity requires identifiers—strings or tokens
that are unique within a given domain, (that is globally or locally within a specific
network, directory, application). Identifiers are the key used by the parties to an
identification relationship to agree on the entity being represented. Identifiers may be
classified as resolvable or non-resolvable. Resolvable identifiers, such as a domain name
or e-mail address, may be referenced into the entity they represent, or some current state
data providing relevant attributes of that entity. Non-resolvable identifiers, such as a
person's real-world name, or a subject or topic name, can be compared for equivalence
but are not otherwise machine-understandable.

Identity does not depend on identifiers, although identifiers depend on identity, and can
be quite useful. One entity may have multiple identifiers, and an identifier may at
different times (or in different scopes) be bound to different identities.
We also need to clarify the relationship between "entities" and "identities", beyond their
syntactic similarity. The relationship between entities and identities can be thought of like
the relationship between constants and variables in a program, both of which can be
represented by identifiers, but named constants can be compared for more than
equivalence.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 7 of 20

ABAC policies should be crafted using entities, where an entity may have multiple
credentials (from different issuers and/or using different authentication mechanisms). In a
federated environment such as GENI, an identity could be a union of a principal’s,
information stored across multiple distinct identity management systems. The databases
could be joined together by the use of a common token. A principal's authentication
process will thus occur across multiple networks or even across several organizations.

Identity certificates have standardized on X.509 certificates [RFC 3280], which are also
used to facilitate secure communications. Private keys are needed for credential issuers.
ABAC does not care about particular encryption mechanisms as long as the JVM (JCE or
BouncyCastle) support them. Additional work will be required to enforce cryptographic
policies. Acceptable cryptographic algorithms should be agreed to out-of-band at first to
avoid interoperability issues, but each enclave needs control across an international
consortium where different cryptographic or data privacy regulations might apply. ABAC
relies on self-signed certificates and does not require a web of trust. Identity certificates
may be self-signed and contain the cryptographic material needed to establish a secure
network connection following the authentication process.

2.2 Authentication

Authentication verifies the identity of an entity in GENI. It is a key aspect of trust-based
identity attribution, providing a codified assurance of the identity of one entity to another.
Traditionally, authentication and identification mechanisms rely on maintaining a
centralized database of identities, making it difficult to authenticate users in different
administrative domains across federated networks. Each federated network keeps track of
its users in a users account database and hence granting access to resources across
networks is challenging. Each control framework may have its own mechanism of
authentication at the early spiral prototypes. ABAC provides a mechanism for dynamic
discovery of credentials which needs to be adapted for each control framework. This
distributes the burden of user credential maintenance. In practice, remote and local
credentials may be cached for performance, which needs to be balanced against the
sensitivity of the operations and resources. Caching time quanta should take revocation
time quanta into account.

2.3 Authorization

Authorization and availability are two distinct questions. Am I allowed to create a slice?
Yes. Can I create a slice? If I'm allowed to create it and the available resources are free,
then yes. Using attributes allows for policy to adapt quickly when large organizational
changes take place (e.g. project termination, experiment launch, etc.). Cached attributes
can also be useful in ad hoc networks, where power constraints and network bandwidth
need to be conserved.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 8 of 20

Authorization in ABAC is performed through a trust negotiation between two parties.
The parties may not have a one-to-one mapping; for example, a subject may be traced
back to an experiment entity rather than a specific principal entity. Credentials in ABAC
are implemented as attribute certificates, which are self-signed by using the same issuer
and holder [RFC 3281]. ABAC does not assume hierarchical organization identity
structures (the underlying toolkits can though).

ABAC policy is constructed from sets of credentials which contain logical assertions
using delegation logic. Credentials allow separation of identity from attributes. Identities
change infrequently over time compared to attributes. Examples of identity changes
would include name changes or security breaches, which occur infrequently but need to
be processed in a timely manner. Rekeying identity should not require regeneration of all
attributes except the leaf nodes in the credential inference chain. Attributes can be
expected to change over varying periods of time. For instance, a student graduating from
a program at Utah may advance from Utah.student attribute to a Utah.alum attribute.
Identity certificate changes under normal circumstances should be infrequent while
attributes changes can be more frequent. The time quantum for a Utah.student attribute
might be a semester, while Utah.alum would have a much larger time quantum. Some
attributes will exist for an experiment, a project's duration, or a for principal's tenure in a
role such as project leader, group leader, or user.

2.4 ABAC Credentials

ABAC uses the RT language [LMW02] for specifying credentials and employs
delegation logic which is used to implement role-based access control. Delegation logic
is important for use in federated experiment policies, where testbeds can delegate and
translate attributes among hierarchical organizations. RT has four types of policy rules:
(1) simple roles; (2) simple inclusion; (3) linking inclusion; and (4) intersection inclusion.
Intersections allow policies which require multiples of types 1, 2, and 3. Credentials take
the form of:

A.r1 ! B

which means the attributed role A.r1 includes the principal entity B.

Type 1 credentials are used to assign a principal (an experimenter, experiment,
organization, etc.) to an attributed role. For example, the following RT statements assert
that three testbeds are being federated:

 GENI.aggregate ! DETER

 GENI.aggregate ! Emulab

 GENI.aggregate ! Cobham

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 9 of 20

Type 2 credentials translate attribute roles across organizational domains where the
included role is at least a subset as shown in this RT example:

 Utah.researcher ! Emulab.researcher

For example, all Utah researchers are Emulab researchers although Utah may have other
researchers not associated with Emulab. This statement also lets Utah (as the entire
campus) delegate policy to Emulab testbed operations for membership and policy. Since
this federated experiment occurs within defined hierarchical organizations, Type 3
credentials can be used by a federation organization, GENI, to define federation
participants as follows:

 GENI.researcher ! GENI.university.researcher

 GENI.researcher ! GENI.company.researcher

 GENI.university ! Utah

 GENI.company ! Cobham

GENI asserts that both university and corporate researchers map to the role of
GENI.researcher. Universities and companies may join and leave GENI but this is likely
to be infrequent; however, each university (Utah) and company (Cobham) has the
autonomy to define researchers using their own policies.

 Cobham.researcher ! Alice

 Emulab.researcher ! Robert

In this example, Utah only needs to know that someone (Alice) is a Cobham researcher or
that someone is Utah researcher (Robert). These are credentials issued directly to Alice or
Robert, respectively. Robert also needs to supply the credential defining Utah.researcher.
RT delegation logic frees the Emulab and Cobham IT staff from maintaining each other’s
membership policy. This degree of autonomy in policy is similar to the autonomy of
sliver resources in a slice. The previous set of RT credentials assign Alice and Robert
attributes directly; however, Emulab could delegate approval of credentials to a Utah
graduate officer as follows:

 Emulab.researcher ! Utah.graduateOfficer.gradStudent

 Utah.graduateOfficer ! James

Now, James, in the role of graduate officer can designate researchers (Ann) by issuing
credentials rather than having the credentials coming from Utah.

 James.gradStudent ! Ann

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 10 of 20

Discovery of ABAC credentials is crucial to the success of a trust negotiation without
caching. In a ProtoGENI environment, discovery should be facilitated by a set of
distributed clearinghouses. Similar to public key certificates, discovered credentials
should be considered freely available. If some disclosure sensitivity is required, ABAC
has access control and acknowledgment policies, which are consulted during the
automated trust negotiation.

2.5 Trust Negotiation

ABAC uses a directed, acyclic graph, called a trust target graph (TTG), to facilitate a
trust negotiation. Each negotiator maintains a separate copy of the TTG, where
negotiators take turns at processing the graph until success or failure occurs. Sets of RT
credentials and TTGs can be thought of as directed graphs. We use the term forward
search to describe an inference chain from a principal entity to an attributed role.
Backwards searches are inference chains mapping from an attributed role to included
principals. Both types of searches are needed for dynamic discovery; however,
discovered credentials cannot not be sensitive to disclosure. For sensitivity, ABAC has
two forms of local policy: access control (AC policy) and acknowledgement policy (Ack
policy), which we describe in the following subsections. TTGs can be cached for reuse
during subsequent negotiation as long as the underlying RT credentials are still valid.

2.5.1 Trust Targets

Access control negotiations start with a resource service provided TTG. Nodes in the
TTG are called trust targets which are connected via directed edges described in [WJ03a].
The root node of a TTG is the primary trust target which typically would look like:

 V: A.r1 <--?—S

Where, V is the verifier, presumably of a service providing a resource which requires the
attributed role A.r1, and S is the subject entity requesting the resource. In this example, V
is the initial negotiator responsible for initializing the TTG. The authenticated, opponent
negotiator may be S or someone authorized to act on the behalf of S.

2.5.2 Access Control Policy

AC policies are associated with credentials as well as with resources. When Alice
requests a resource, the access mediator transmits to Alice the AC policy of that resource.
This is in effect a query asking Alice whether she holds credentials that satisfy the AC
policy. In ABAC, this operation is performed when the verifier initializes the TTG and
transmits it to the opponent. AC Policy is local policy for the service provider and does
not need to be publicly available.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 11 of 20

2.5.3 Acknowledgement Policy

Ack policy is local policy, whose goal is to protect a negotiator’s sensitive credentials.
Ack policies ensure that no one is able to learn through negotiation whether a negotiator
satisfies an attribute without first satisfying an Ack policy. Using the earlier GENI
examples, GENI.aggregate attributes could be required before any credentials issued by
James are released in a negotiation.

3. ProtoGENI

This section describes the current access controls available in ProtoGENI and gives
examples of policy usage for the control framework.

3.1 Current Access Controls

ProtoGENI uses standard X.509 identity certificates from Emulab in order to facilitate
secure communications over SSL. We propose extending the ProtoGENI decision points
to make ABAC web services calls and extending ABAC to support ProtoGENI
credentials. The ProtoGENI control framework already supports SSL authentication and
implements a comprehensive set of control framework interfaces based on the SFA. The
following sections briefly cover the framework and how it can benefit from ABAC.

3.1.1 Control Framework

Narrowly interpreted for this project, the control framework includes the slice authority
and component manager. Permission to use a resource does not guarantee availability. In
production systems, ABAC needs to verify credentials transmitted during the automated
trust negotiation (ATN). The authenticated requestor should either be the subject of the
negotiation or a delegate such as an authority or manager acting on a principal’s behalf.
The Component Manager abstraction is used for contributing resources to ProtoGENI.
We propose the following roles for delegated access control: Infrastructure (clearing
house required functions), User (slice, sliver, ticket), and Admin(slice, sliver, ticket).

Engineering issues:

• Is Resolve sensitive? If there are credentials retrieved, then yes. If this operation
is strictly for identity (authentication) then our interpretation would be no, since
this is similar to discovery.

• For a given experiment, who are the likely users (PI, experimenter) and what is a
likely distinction?

• Ack policy is not immediately necessary, but as more users and projects are added
to the ProtoGENI environment, some restrictions should be anticipated.

• Is it necessary to have a users and administrator role? Do users actually need to
use slices, slivers, or tickets?

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 12 of 20

Table 1 - Component Manager Features

Function Name Description ABAC Feature
Resolve Lookup an object (by URN)

and return information
about it.

Gets information about a
principal. This is where
AckPolicies need to be
inserted.

DiscoverResources Return information about
available resources.

Possibly use this with the
intersection of a forward
search

CreateSliver Add a sliver to an existing
slice.

Sliver access control

GetTicket,UpdateTicket Request a ticket from the
Component Manager. A
ticket is another form of a
credential, which in this
case, is an rspec that has
been signed, indicating a
promise to deliver the
resources specified in the
rspec when the ticket is
redeemed.

Ticket access control

RedeemTicket Redeem a ticket obtained
via the GetTicket() or
UpdateSliver(). Note that
the ticket is effectively
destroyed, and no longer
usable or accessible, if the
operation succeeds.

Ticket access control

UpdateSliver Request a change of
resources for an existing
sliver.

Sliver access control

RenewSlice Request a change of
expiration time for an
existing sliver.

Slice access control

ReleaseTicket Release a ticket obtained
via the GetTicket() or
UpdateSliver().

Ticket access control

StartSliver Request that resources
associated with a sliver be
started.

Sliver access control

StopSliver Request that resources
associated with a sliver be
stopped.

Sliver access control

RestartSliver

Request that resources
associated with a sliver be

Sliver access control

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 13 of 20

restarted.
DeleteSliver

Request that a sliver be
shutdown, returning a ticket
for whatever remains of the
original promise of
resources.

Ticket access control

DeleteSlice Request that all resources
associated with a slice be
released, and the sliver and
slice records deleted.

Slice access control

GetSliver

Request a sliver credential
for any resources that are
currently allocated to a
slice. Put another way, this
call allows a user to get a
duplicate sliver credential,
if they have a valid slice
credential.

Sliver access control

BindToSlice

Bind to a slice so that the
caller may manipulate the
slice.

Slice access control

SliverStatus,WaitForStatus

Return a description of the
status for all of the
resources that have been
allocated to the slice on the
component.

Sliver access control

ListUsage

Return a list of all resources
in use. This is used by the
ClearingHouse to get a
global sense of usage.
Currently, only the
ClearingHouse will be
allowed to make this call,
but it might perhaps be
made available to other
principles, e.g. GMOC

This is a sensitive operation
and should require
AckPolicy.

Shutdown

Shuts down a slice
completely.

Slice access control

ListHistory

This operation is reserved
for the Clearing House
(which authenticates itself
with the credential
parameter).

This is a sensitive operation
and should require
AckPolicy.

GetVersion Return the revision number
of this API.

N/A

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 14 of 20

The Slice Authority (SA) coordinates resource sharing and mediation. Table 2 - Slice
Authority Functions, lists the functions of the SA and where they fit into the ABAC
framework. The functions can almost completely be divided into identity/credential
functions {GetCredential, Resolve, Register, Remove, DiscoverResources, GetKeys} and
slice operations {BindToSlice, RenewSlice, Shutdown}.

Table 2 - Slice Authority Functions
Function Name Description ABAC usage
GetCredential Request a credential from the

Slice Authority.
Add credential to local cache

Resolve Lookup a UUID and return
information about it.

Acknowledge policy needed
here?

Register Register a principal object,
returning a new credential to
manipulate that object later.

Add credential to local cache

Remove Remove a principal object from
the Slice Authority.

Check for ABAC slice privilege

DiscoverResources Discover available components* Forward search on principal
entity?

GetKeys Get all the SSH keys for the
caller.

Used for verifying a credential
signature

BindToSlice Bind a local user to a slice so
that the user may manipulate the
slice. This call can be invoked
by any user with a valid slice
credential.

Check for ABAC slice
privilege.

RenewSlice Request a change of expiration
time for an existing slice.

Check for ABAC slice privilege

Shutdown Perform an emergency shutdown
on a slice, by asking the SA (for
that slice) to do an emergency
shutdown. Operationally, the
request is forwarded to the
ClearingHouse which knows the
full set of Component Managers.
The call returns once the
ClearingHouse is notified; the
ClearingHouse will process the
request asynchronously.

Check for ABAC slice privilege

GetVersion Versioning for compatibility N/A

*Are all published components available to any authenticated user? Using a forward
search (including discovery) would return a set of all authorized resources. This is likely
a research topic.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 15 of 20

The slice authority uses Emulab certificates for authentication. The key pair used for
authentication should be used for the ABAC trust target’s issuer and subject if they are
equivalent. The SA needs to initiate access control requests for slice privileges and
credential management.

3.1.2 Clearinghouse

The clearinghouse functions include the features of the keystore in the reference ABAC
implementation. Dynamic discovery in ABAC facilitates retrieval of distributed
credentials in order to guarantee the timeliness of a trust negotiation. ProtoGENI
credentials and principal identity certificates will need to be retrieved. Currently,
ProtoGENI credentials can only support RT type 1 credentials. We expect to reuse the
discovery API call described briefly in Appendix A.

Ideally, access control should be performed on the {Register, Remove, List, PostCRL}
set of principal modifying functions. Care should be used during policy creation to ensure
that at least some principals can register and remove other principals. A complete
description of all clearinghouse features can be found in table 3. The slice related
Shutdown function should also be a privileged function.

Table 3 - Clearinghouse Functions
Function Name Description ABAC Usage
GetCredential Request a credential for accessing

certain protected parts of the
clearinghouse API.

Access control point to
determine whether this is
allowed for the callee.

Register Register a principal object, returning
success of failure.

Dynamic addition of
identity certificate.

Resolve Lookup a URN and return information
about the corresponding object.

ABAC will need this for
dynamic discovery search
path.

Remove Remove a principal object from the
clearinghouse database. Note that only
users and slices may be deleted from
the clearinghouse at this time.

Dynamic removal of
identity certificate.

Shutdown Perform an emergency shutdown on a
slice.

Possible access control
point to determine whether
this is allowed for the
callee.

ListComponents Return a list of all component
managers.

TBD. Does this need to be a
trusted operation?

PostCRL This is a ProtoGENI specific call that
is used by the federants to post their
Certificate Revocation Lists.

Must be consulted before
verification is complete.

List Return a list of all objects of the
specified type, which should be one of
"Authorities", "Components", "Slices"

Authorities and Users will
be needed for verifying
credential signatures.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 16 of 20

or "Users".
GetVersion The revision of this API supported by

the clearing house.
N/A

3.2 ProtoGENI Attributes

This section describes policy examples specific to ProtoGENI and how they can be used
in slices and slivers. Using the Emulab access control model as a starting point
[GROUPS], ProtoGENI can define four privilege levels: project leader, group leader,
local administrator, and user. Users have the least amount of privilege and they should
only have enough privilege to invoke the services in a slice. Local root users can
administer slices and use the services provided by a slice. Group leaders can designate
other group leaders, local administrators, and users, etc. Project leaders can in turn create
groups and group leaders. Using attributed roles, the potential sliver locations are defined
below:

ProtoGENI.aggregate ! PrimoGENI

ProtoGENI.aggregate ! Emulab

ProtoGENI.aggregate ! Cobham

These aggregate credentials should only be created when an out of band agreement
between ProtoGENI and the subjects have been completed. Next, the privileges might use
RT type 3 credentials to delegate aggregation:

ProtoGENI.user!ProtoGENI.aggregate.user

ProtoGENI.localRoot! ProtoGENI. aggregate.localRoot

ProtoGENI.groupLeader! ProtoGENI. aggregate.groupLeader

ProtoGENI.projectLeader !ProtoGENI.aggregate.projectLeader

Now Cobham, Emulab, and PrimoGENI are free to designate principals to fill roles. Note
that within small organizations, group delegation may not be as crucial (e.g. researchers)
while roles such as user may have multiple levels or types of delegation (e.g. university
classes, training classes, etc.).

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 17 of 20

3.2.1 Control Framework Policies
The component manager and slice authority access control are concerned with sliver and
slice usage privileges. The main distinction is between users who do not need
administrative privileges and developer and managers who will be (de)allocating slices
and slivers. Here is a sample policy for slices (slivers would have an analogous set):

 ProtoGENI.sliceUser !ProtoGeni.user

 ProtoGENI.sliceUser !ProtoGeni.sliceControl

ProtoGENI.sliceControl!ProtoGENI.localRoot

ProtoGENI.sliceControl!ProtoGENI.groupLeader

ProtoGENI.sliceControl!ProtoGENI.projectLeader

These slice policies would be agreed to by all the aggregate members and are public
knowledge. The access control point would use a trust target similar to the following:

Cobham: ProtoGENI.sliceUser !? Alice

In this case, Cobham is asking whether Alice is a ProtoGENI slice user. Since Alice has a
researcher credential from Cobham, she must either supply a credential stating that
Cobham researchers or Cobham may publish a credential with the clearinghouse similar
to the following:

Cobham.user !Cobham.researcher

Discovered credentials do not allow for sensitivity. If this policy information is
confidential to Cobham, then Alice needs to hold the credential in order to verify the
other negotiator meets Cobham’s Ack policy.

3.2.2 Clearinghouse

The clearinghouse is a repository for publicly available information which can be
discovered. The operations Register,Remove,PostCRL are used to for credential
management, which needs access control. Using the previous examples in section 3.2.1,
clearinghouse policy could be similar to the following:

ProtoGENI.clearinghouseAdmin ! ProtoGENI.localRoot

ProtoGENI.clearinghouseAdmin ! ProtoGENI.groupLeader

ProtoGENI.clearinghouseAdmin ! ProtoGENI.projectLeader

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 18 of 20

Policy decisions for the clearinghouse include can a user add a self-signed identity
certificate and which issuers may add credentials. Credentials should be added by the
issuer signing them. Identity credentials should be added by their principals or on their
behalf.

4. Attribute Extension Requirements

The goal of this effort is to extend the ABAC reference implementation to support
multiple, distinct control frameworks. This section currently describes the necessary
features for ProtoGENI to fully support and use all ABAC features and proposes further
tasks. Task sections are listed in order of importance.

4.1 Decision Points

The access control decision points should be extended to reuse existing ABAC web
service function access. Aggregate and component management are the access control
decision points which can rely on this operation.

The clearinghouse is essential for performing dynamic discovery of credentials. The
decision points need to guard against adding unauthorized users or removing authorized
users.

4.2 Credentials

ABAC needs to support for ProtoGENI identity certificates. Propose and document
ProtoGENI credentials for all four types of RT credentials. Currently only type 1
credentials can be used.

Add attribute credentials generation to ABAC for existing ProtoGENI credentials.
Modify ProtoGENI credential formats to support types 2, 3, and 4. Type 4 (intersection)
credentials are not immediately needed.

4.3 Discovery

Credentials used in ABAC need to use the clearinghouse for looking up public keys to
verify credentials. Indexing of credentials should be done on the following keys: issuer
(for auditing), required role (for backward searching), and subject role (for forward
searching). The clearinghouse can also provide URNs to resolve name spaces for
principals and attributes.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 19 of 20

4.4 Revocation

Identity certificate revocations are done through the clearing house. Credential
revocations need to be added to the clearinghouse. ABAC uses a trust target graph, which
can be cached. The duration of the caching should be coordinated with the revocation
update quantum. Credentials should also have an expiry date which should limit their
usage.

4.5 Policy Features

The reference ABAC implementation does not restrict cryptographic algorithms. We
propose adding enforcement points within ABAC for cryptographic policies. For
example, if multiple credentials for a principal exist a particular organization may trust
one authentication mechanism or require a minimum cryptographic strength or elliptic
curve cryptography may be more desirable in low power environments.

Policy tools for auditing within an organization and between organizations. Modifying
ABAC policies is simpler than non-role based policies; however, audit tools for a
production environment will be needed as policy for projects and experiments change
over time. Migrating users and administrator during project and group creation are a
particularly critical time.

GENI-RBAC-REQ-.05 15 Jan 2010

 Page 20 of 20

Appendix A: ABAC Web Service (WS-ABAC)

The reference ABAC web services interface supplies the following functions:

• negotiate – internal function used between negotiators to pass messages
o in: negotiation request (message)
o out: negotiation response (message)

• createContext – negotiation context unique to set of opponents
o contextInfo (name)
o contextInfo (id)

• access – an access request in the form of a primary trust target
o in: access request (trust target, negotiation context)
o out: access response (result, provenance, trust target)

• credentialUpdate – dynamic method for adding credentials to a specific context
o in: credential[]
o out: result code[]

• discovery -- discovery service which allows a search of credentials
o in: op {issuer, required, subject}, credential
o out: credential[]

