
Measurement Architectures for Network
Experiments with Disconnected Mobile Nodes

Jolyon White, Guillaume Jourjon, Thierry Rakatoarivelo, Maximilian Ott

NICTA?

Australian Technology Park
Eveleigh, NSW, Australia

firstname.lastname@nicta.com.au

Abstract. Networking researchers using testbeds containing mobile
nodes face the problem of measurement collection from partially dis-
connected nodes. We solve this problem efficiently by adding a proxy
server to the Orbit Measurement Library (OML) to transparently buffer
measurements on disconnected nodes, and we give results showing our
solution in action. We then add a flexible filtering and feedback mech-
anism on the server that enables a tailored hierarchy of measurement
collection servers throughout the network, live context-based steering of
experiment behaviour, and live context-based control of the measurement
collection process itself.

Key words: measurement, testbeds, mobile, OML, disconnected measurement

1 Introduction

Distributed networking experiments require distributed measurement collection
systems. Approaches to remote network measurement collection range from ad-
hoc methods used in academia through to large, commercial systems deployed
by network operators. Ad-hoc methods are typically sub-optimal, error-prone,
and time consuming, but available measurement and monitoring frameworks
[11, 12] tend to be prohibitively complex for use in many research projects.
A measurement framework for network research should be simple to use and
administer, but must be flexible enough to match the heterogeneous, dynamic
needs and environments that usually characterize it.

Mobile networking research is a good example. Indeed, for static testbeds, a
simple client/server measurement collection architecture is adequate [5], as long
as the rate of measurement output does not influence the studied phenomena,
and does not overload the collection server. If a testbed network includes mo-
bile nodes, some nodes may not always be connected to the network. In that
? NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

firstname.lastname@nicta.com.au

2 Jolyon White et al.

case, what should happen to the measurements that the disconnected nodes are
generating?

On the other hand, in an experiment where all nodes are always connected,
the rate of generation of measurement data by even a single node may congest
either the network, the measurement collection server, or the client applications
generating the measurements. This can result in lost measurements; worse still,
it can lead to the measurement collection activity influencing the behaviour of
the network under observation, and with it, the results of the experiment.

These two different problems can both be solved by making a single but
important change to the architecture: namely, the addition of a proxy server
on the experiment node, effectively a queue, to act as an intermediary between
the client applications and the measurement collection server. Once the mea-
surement architecture contains such proxy servers on the experimental nodes
themselves, a further innovation of the architecture becomes apparent, that to
our knowledge has not been attempted before. We extend the proxy server to
implement a measurement database instead of just a queue, which allows us to
perform measurement-based feedback to the experiment applications themselves
in what we term distributed, context-based experiment steering. This leads to a
flexible hierarchy of measurement servers for future advanced testbed networks.

In this paper, we consider the architecture of measurement collection frame-
works in detail:

– We describe the two problems of mobility (Section 3.1) and measurement
bandwidth constraints (Section 3.2).

– We show how both of these problems can be solved by introducing a proxy
server to buffer measurements on the local node before sending them to the
central measurement server (Section 3.3).

– We give some quantitative measurements to demonstrate the benefits of this
approach (Section 3.4).

– We discuss extensions to the proxy server to allow measurement-based exper-
iment steering (Section 4).

– We compare and contrast our architecture to existing measurement frame-
works (Section 5).

The measurement architectures described in this paper are embodied in
OML2, the second generation Orbit Measurement Library, which we have devel-
oped and made freely available at [3]. OML is a generic measurement framework
capable of instrumenting the entire software stack, and is not just limited to
network-specific measurements.

2 Background

To set the scene for this paper, we begin with a description of the testbed
network environments that we are considering, and a simple, näıve client/server
architecture for measurements that we use as our starting point.

Measurement Architectures for Network Experiments 3

2.1 Testbed Architectures

Fig. 1 shows a general testbed architecture. The experiment nodes participating
in the experiment use one or more Experiment Networks (EN) to perform the
networking tasks that comprise the experiment itself. Meanwhile, the control
nodes communicate with the experiment nodes using a separate Control Network
(CN) to perform tasks such as imaging the nodes with an operating system
at the start of the experiment, bringing the experiment nodes up, starting the
applications that participate in the experiment on the experiment nodes, logging
status and error information, and ensuring orderly shutdown of the experiment
once it is complete.2

. . .

. . .

Control
Network

Experiment
Networks. .

 .

Control
Node 1

Control
Node K

Experiment
Node 1

Experiment
Node 2

Experiment
Node N

Fig. 1. Generic testbed network architecture.

The architecture in Fig. 1 can contain heterogeneous experiment nodes, each
node connected to different experiment networks. In practice, there will be vari-
ations in the hardware capabilities and available interfaces on each experiment
node. With mobile nodes, the connectivity may even change mid-experiment.

The separate control network minimizes the impact of control tasks on the
behaviour of the experiment tasks, so that the underlying protocols, algorithms,
and applications can be studied in as much isolation as possible. This improves
quality of results and repeatability. However, sometimes we do not have the
luxury of a separate control network. The node hardware might not support
enough interfaces of the right type, or the separate infrastructure required for a
control network might not be available for some nodes. Mobile nodes often have
these properties.

We have drawn the control and experiment networks as single network seg-
ments, but this is just for simplicity: the actual network topology of each network
could be more complex. Also note that infrastructure nodes such as routers could
also be participating in the experiment and generating measurements.
2 We use OMF, a control framework that we have developed, to perform these tasks

on our own testbed networks [16].

4 Jolyon White et al.

2.2 Experiment Node Architecture

Each experiment node runs a number of applications and services (i.e., daemons)
that execute the tasks required to run the experiment itself, as shown in Fig. 2.
These applications and services can communicate with other experiment nodes
using the interfaces e1–eN . They can also access and monitor operating system
information and local devices, such as GPS receivers, temperature sensors, and
pressure sensors.

App 1

App 2

App M

e1

e2

eN

c1

M
ea

su
re

m
en

t L
ib

ra
ry

 (O
M

L)

Control
Network

. . .

. . .

. . .

Experiment
Networks

EN(1)
EN(N)

Local
Files

Experiment Node

Sensing
daemon

System
Monitor

sensor device

Fig. 2. Architecture of an experiment node, showing some applications, a system
monitor daemon generating measurements from information provided by the operating
system, and a sensor daemon generating measurements from an input sensor device.

The applications and services perform measurements of the system under
study, measuring quantities such as:

– network characteristics and impairments (e.g., bandwidth, packet loss rate);
– local context information (e.g., RAM or CPU usage); and
– device-generated data (e.g., GPS coordinates, temperature, pressure),

for example. They use functions provided by the OML measurement library to
send their measurements either to a file on the local filesystem, or to a mea-
surement server on the control network via c1. OML is flexible enough that the
applications can send measurement data to multiple measurement servers if de-
sired. Fig. 2 shows the general case. The node may have only one experiment
network interface (N = 1) and it may have to send and receive control and
measurement data over the experiment interface if no separate control interface
is available.

The experiment nodes may have a wide variety of hardware, operating sys-
tems, attached peripheral devices, and networking interfaces. Thus, the mea-
surement architecture must be portable, flexible, and efficient enough to cope
with such a wide range of platforms.

Measurement Architectures for Network Experiments 5

2.3 Client/Server Measurement Architecture

The simplest distributed measurement architecture, which is our starting point,
is a client/server architecture. OML operates in this fashion in its most basic
configuration. Fig. 3 depicts the data path from a single experiment application
to the server in OML.

F4

F5

F1

F2

F3
OML

Server
SQL

Database

Control Node 1

OML
Server

Control Node 2
local
file

Application liboml2

MP1

MP2

MP3

(x1,...,xN)

(y1,...,yM)

(z1,...,zP)

MS1

MS2

MS3

MS4

MS5

SQL
Database

Fig. 3. Measurement data path in OML. The application illustrated defines three mea-
surement points, and the user has configured the library to generate five measurement
streams.

The application defines a number of measurement points (MP) into which
it injects a stream of typed measurement tuples. Each MP is an interface to
the client library, liboml2. The client library creates a number of measurement
streams (MS), based on the run-time configuration specified by the user in an
XML file, to match the needs of the experiment. Each MS filters the MP inputs
in a configuration defined by the XML file. OML supports built-in and user-
defined filters. Fig. 3 shows that an MP can be a source of data for multiple
MS’s (MP1 participates in streams MS1, MS2, and MS3), and that filter outputs
can be combined to form new streams (filters F1 and F2 are inputs to F3, which
generates stream MS2). Measurement streams can be sent to an OML server or a
local file (also configurable via the XML file) and different measurement streams
can be sent to different destinations, including potentially multiple OML servers.
The filter outputs are also typed tuples.

Currently OML supports integer, floating point, and string data, and we have
plans to add support for more data types such as blobs. OML uses a one-way
protocol initiated by the client. Both text and binary versions of the protocol
are available, and we are currently evaluating adopting IPFIX [6].

The server collects data from each experiment and sends it to a storage
backend. Because the measurement streams consist of sequences of typed tuples,
they are well suited to be stored in tables in a relational database; currently the
concrete backends supported by OML are SQL databases. OML imposes very
little structure on the measurements collected to remain as flexible as possible

6 Jolyon White et al.

and support an evolving research context. The SQL database allows us to offload
the problem of devising our own measurement storage format, and provides easy
and efficient result querying. OML currently supports SQLite directly, but some
OML users have added support for PostgreSQL. We plan to extend OML to
directly support multiple database backends in the future.

There is a table in the database for each measurement stream in each client
application; the same application can be running as part of the same experiment
on multiple nodes, in which case all of their measurement outputs will be stored
in the same table.

3 Measurement in Dynamic Networks

We now describe two scenarios where the assumptions underlying the client/server
architecture are broken, and we further show how our proxy-based architectural
enhancement addresses these problems. These examples are informed by the pre-
vious experiments of users evaluating their own research prototypes on wireless
testbeds, such as the ORBIT or NICTA testbeds [17]. Thus, they represent real
problems that users had to overcome to advance their research agendas.

3.1 Mobile Nodes

Sometimes when users perform experiments involving mobile nodes, they are ex-
plicitly interested in studying the behaviour of networking technologies and algo-
rithms when the mobile nodes move outside the testbed network’s normal wire-
less coverage. For example, smart phones typically have multiple radio interfaces,
such as WiFi, 3G, and WiMAX. We may be interested in the behaviour of a dis-
tributed algorithm that preferentially favours a low-cost radio interface (WiFi)
when available, but falls back on a more expensive interface (3G, WiMAX) if
no other networks are available in the mobile handset’s vicinity [14]. They may
even go out of range of all wireless networks for a period.

Such experiments could be done with real mobile handsets, or they could be
done with mid-range hardware emulating the mobile handsets. In either case,
this configuration causes two problems for measurement collection.

The first problem is that if measurements are sent during the experiment,
then the measurement traffic must often be sent over one of the experiment net-
work interfaces, which may interfere with the experiment itself and taint subse-
quent measurements. Depending on the testbed configuration, the measurement
server may not even be reachable from any of the experiment networks, and this
situation could even extend beyond the duration of the experiment. This leads
to the second problem: what should the mobile node do with the measurements
that it generates while it is out of range of the control network?

We have two options: either drop measurements while the control network
is not reachable, or buffer them until the mobile node reconnects to the control
network. Discounting the first option as undesirable, we must buffer.

Measurement Architectures for Network Experiments 7

3.2 Throughput-Constrained Measurement

Even in networks with a static topology, we still sometimes need to buffer mea-
surement data on the local node. If the experiment involves high traffic rates
on high bandwidth interfaces, then the rate of generation of measurements can
also be very large, and the datapath to the measurement server can become
congested, risking either loss of measurement data or changes in the behaviour
of the experiment applications due to delays in the measurement datapath.

One of the primary aims of the filtering facility of liboml2 is to allow re-
duction of the measurement data that needs to be transmitted to the server,
for instance, using averaging. However, in some circumstances the experimenter
might want to observe effects that the filtering would discard. In that case an-
other solution is required: buffering measurements on the experiment node.

3.3 Proxy Servers

Recalling that we want our measurement framework to be as convenient as
possible for researchers to use, we want to ensure that buffering measurements
does not force complicated modifications to the client applications. Our solution
is to create a separate proxy server on the experiment node. The proxy server
acts as a FIFO queue, but allows the experimenter to gate the FIFO output.

App 1

App 2

e1

e2

c1

M
ea

su
re

m
en

t L
ib

ra
ry

 (O
M

L)

Control
Network

.

Experiment Node

OML
Server

SQL
Database

Control Node

Proxy
Server

ON/OFF

Sensing
daemon

System
Monitor

sensor device

Fig. 4. Measurement architecture with proxy servers.

Figure 4 shows the proxy server architecture. The proxy server presents an
interface to the client applications that is identical to the regular OML server: it
supports TCP or UDP socket connections using the same protocol as the server.
It is thus transparent to the client applications, which do not need to be mod-
ified or re-compiled. The measurement server protocol (TCP/UDP), address,
and port number are run-time configuration parameters, specified on the client
application’s command line or through an XML configuration file.

In Fig. 4, the proxy server is shown running on the same node as the ex-
periment applications, but it can be hosted on a separate node if the situation
requires. However, for the two use-cases we presented in the preceding sections,

8 Jolyon White et al.

running the proxy server on the experiment node is exactly what we want, be-
cause it makes the measurement collection independent of the network. In both
of those cases, the proxy server is configured to buffer all measurement data
in memory until the end of the experiment. At the end of the experiment, the
experimenter instructs the proxy server to turn ‘ON’ the output stream, where-
upon the proxy server connects to the upstream full OML server and transmits
the stored measurements to it.

The proxy server implementation is simple, as it does not have to process
any data on its input stream. Furthermore, since it is a one-way stream, the
proxy server can simply store the raw octets from the experiment applications
in memory, and then replay them out to the OML server verbatim. It also has
the option to write the measurement data to file to provide a backup and limit
its memory usage.

3.4 Results

We now provide some experimental data that demonstrate the management
of the disconnection. This experiment was originally presented at the 4th GENI
Engineering Conference [4]. In this experiment, two mobile nodes exchange UDP
traffic over a WiFi ad-hoc network. One node is stationary, and the other moves
along a short circuit as illustrated in Fig. 5. Both nodes run an OML-enhanced
version of iperf [2]. In addition, the roaming node also runs a GPS application
collecting location information. The UDP traffic and GPS measurements are
collected using the OML framework.

Fig. 5. Path of the roaming node from GPS data (aerial photo from Google Maps [8]).

To demonstrate the proposed proxy scheme, the UDP traffic measurements
are collected via OML over the WiFi network, which will become unavailable as

Measurement Architectures for Network Experiments 9

the roaming node moves away from the static one. However, to allow real-time
visualization during a live demonstration, a second permanent WiMax network
is used to continuously collect GPS information. The duplication of the GPS
measurement stream is completely transparent to the application.

OML
Server

SQL
Database

WiMax -always
connected

during
experiment

On/Off
Wifi -

disconnected
during

experiment

Iperf

MP

GPS

MP

Filters

Fig. 6. OML Internal Configuration of the two Nodes and Server.

We have run this experiment numerous times, with a typical result shown in
Fig. 7. In this figure, the x-axis represents time; the OML server automatically
time stamps all samples received throughout the experiment. The distance was
computed based on the GPS localisation, and the bandwidth was computed
using fixed windows of one second on the receiver side.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

D
is

ta
n

c
e

 (
m

)

B
a

n
d

w
id

th

Time (s)

Distance
Bandwidth

Fig. 7. Packet Loss Rate and Distance in function of the time

In Fig. 7, we can observe the correlation between the distance and the
achieved bandwidth. This can be explained by the fact that during this time
the two nodes are disconnected. During this disconnection period, all the mea-
surements are stored by the proxy. Once the roaming node gets closer to the

10 Jolyon White et al.

static node and to the OML server, the proxy is set to resume sending the
buffered measurements to the OML server. Another advantage of OML in this
experiment is the automatic time stamping, which allows the time evolution of
different quantities to be put in perspective.

4 Further Extensions

Once the measurement architecture contains a processing element beyond the
client applications on the experiment node, it is natural to ask what further sorts
of processing could be done on the node itself. This line of thought takes the
measurement architecture away from a basic client/server architecture. In the
following sections, we describe two architectural enhancements we have devel-
oped as a result of discussions with users of OML whose needs were not met by
the standard existing OML facilities.

4.1 Hierarchical Measurement Collection

In a measurement application that generates large volumes of data, it may be
either too expensive or impracticable to store every sample collected. This may
not be a problem if the utility of the collected samples decreases over time. For
instance, in a server load-monitoring application, high resolution measurements
for the last hour might be interesting and useful, but the same for a period six
months ago might be useless. An average over a coarser timescale might suffice
for historical records of that age or older, so that full-rate, high resolution data
does not need to be stored in its entirety.

Measurements in current
period

Raw Measurements Table Filtered Measurements

Filter

Periodic
SQL query

Optional

Measurement
streams

from clients

Fig. 8. Server architecture for hierarchical measurement collection.

The basic architecture described in the previous section does not permit
this type of volume-thinning. To support it, we augment the server architecture
as shown in Fig. 8. The server includes a query mechanism that periodically
executes an SQL query on any measurement table. The results of the query are
appended to another table. The query can, e.g., compute an average of numeric
quantities stored in the table, then cull the rows that were averaged, to prevent
the table size from increasing beyond a set bound. This gives a compromise

Measurement Architectures for Network Experiments 11

between the storage requirements and availability of high resolution data, and
is similar to stream databases [7] and round-robin databases [18].

We can extend this idea in three ways. First, we can compose a hierarchy
of measurement timescales to suit the requirements of various different users of
the collected data. For instance, we could store high resolution measurements
for the last ten minutes, medium resolution for the last hour, and low resolution
for the last six months.

Secondly, the destination table for the periodic query results does not have
to be hosted on the same machine. We can instead transmit the aggregate mea-
surements to another OML server, using the same measurement protocol that
the client applications use. The hierarchy of timescales is then reflected in the
hierarchy of collection servers. This flexibility can be put to several uses, such
as server load management or multi-site redundant storage, but we will describe
what we think are some of the most interesting ones in the following subsection.

Thirdly, if SQL does not provide enough expressive power to compute the
desired summary metric for a particular measurement table, we can augment
the server with a configurable filtering mechanism, identical to the one available
to the client applications in OML. This is the filter block shown in Fig. 8.

We can use the measurement stream architecture in the client application to
implement very flexible measurement collection configurations. For instance, we
can create two streams from the same MP and send one stream to a local high-
resolution server on the experiment node and the other to a lower-resolution
server elsewhere on the network.

4.2 Context-Driven Experiment Steering

We now have an architecture with an OML server that can do periodic computa-
tions on the received data, and send results of the queries to an upstream server.
The local OML server can be running on the experiment node itself. We could
also use this mechanism to periodically check for particular events that might
be reflected in the measurement data. If we add a feedback mechanism, then we
can use this event detection facility to modify the course of an experiment while
it is running. We call this capability context-driven experiment steering.

Fig. 9 illustrates this architecture. The feedback loop can be contained en-
tirely within one node if the OML server is running on the same node as the
applications. More generally, the feedback mechanism is distributed, so that a
remote OML server in the measurement hierarchy can give steering feedback to
one or many nodes participating in the experiment.

One example of such an application would be to detect when the quality of
service to a node becomes too degraded, and remove the node from the exper-
iment. Another approach might be to only start some of the experiment appli-
cations after a condition has been met, for example, in a peer-to-peer download
experiment, only starting the peers once the seeder has downloaded enough of
the file from a central server. The idea of trip lines, where a mobile node cross-
ing from one geographic region to another causes some action to be performed,

12 Jolyon White et al.

Measurements in current
period

Raw Measurements Table

Filter

Periodic
SQL query

Optional

Measurement
streams

from clients

Application 1 Application 2 Application N. . .

PubSub Network

Detected
event
signal

Event
notifications

(Applications can
be local or remote)

Fig. 9. Context-driven experiment steering. Measurements are used to detect con-
ditions that trigger pre-defined behaviour in the client applications, using a pub-
lisher/subscriber notification mechanism.

is a third example of experiment context that can be implemented using our
measurement architecture [9].

We are considering a publisher-subscriber framework to implement the feed-
back mechanism, such as Dbus or XMPP. The client applications must subscribe
to and listen for particular events, and the server must have a mechanism for
specifying what events are published and how they are detected. This could use
a combination of SQL queries and filtering, with the final stage of the filter being
a predicate function. The management framework can also play a part in the
feedback mechanism, e.g., for starting and stopping experiment applications.

This extension opens up a range of new possibilities for experiment design
and measurement applications.

4.3 Context-Driven Measurement

If we have a feedback mechanism that detects events in the measured environ-
ment, why not then allow detected events to influence the measurement process
itself? This is the third extension. We reflect the feedback mechanism back onto
the OML server, so that we can tailor the measurement strategy to the current
conditions. For instance, suppose we are only interested in low-resolution mea-
surements of a particular quantity most of the time, but when an alarm occurs,
we want to start recording high-resolution measurements. In this case we can
add a second query/filter path to Fig. 8, and switch between them based on a
feedback signal, as in Fig. 10.

With this third extension, we have outlined our architecture for distributed
measurement collection. We now go on to compare our architecture against other
work in the field.

Measurement Architectures for Network Experiments 13

SQL
Filter

OML server
input stream

Filter

Filter
SQL

SQL
High Res

Low Res

Measurement
streams

from clients

Filtering Control

HI/LO

Detected
event
signal

Measurement
control signal

Fig. 10. Context-driven measurement. A measured event feedback signal is used to
influence the measurement capture process itself.

5 Related Work

There are various existing measurement frameworks, some of them open source
and some of them proprietary. Some of them are geared towards network mon-
itoring for system administration, whereas others are more useful in research
contexts.

CoMo (Continuous Monitoring) [11, 12] is a network measurement system
based around measurement of packet flows. It has core processes that are linked
in stages, namely packet capture, export, storage, and query. These processes
capture, filter, measure, and store properties of packets and packet traces. The
core processes are linked by user-defined modules that are used to customize
the measurement system and implement filtering functions. The query process
provides an interface for distributed users to run queries on the captured packet
traces.

The core processes are designed for speed and efficiency and are in charge
of data movement operations. One of the overriding goals in CoMo is to make
querying as efficient as possible[11], because CoMo can operate on very large data
sets (∼ 1 TB). CoMo modules essentially pre-compute the answers to queries,
speculatively. Queries identify traffic with specific properties, such as finding
flows that match certain criteria. As the CoMo system itself, including captured
packet storage, can be distributed across the network, CoMo introduces the
notion of “distributed indices” to speed up the process of finding the locations
of packet traces of interest to a query.

CoMo is a highly tailored tool designed for efficient packet trace capture
and analysis. OML, by contrast, is a generic framework that can instrument the
whole software stack, and take input from any sensor with a software interface.
One of CoMo’s great strengths is its query architecture, and OML does not
include a comparable mechanism, relying instead on its SQL database storage
substrate to provide the experimenter with a query interface to her data.

14 Jolyon White et al.

One could also compare OML to network adminstration monitoring tools
such as SNMP (covered by numerous IETF RFC’s, starting with RFC 1155,
1157, for instance). SNMP has a high overhead compared to OML. Monitoring
in SNMP is based around OID’s—object identifiers—that identify measurement
items of interest and are essentially numeric and not human-readable. A cen-
tral management information base (MIB) must be maintained to map OID’s to
human-readable strings. This is at odds with the needs of research, which is by
nature dynamic and often not centralized enough to permit the maintenance of
an MIB, which also adds unnecessary cost. In OML, a user wanting to measure
a new quantity simply defines a new measurement point in the relevant client
application and configures the filters for his experiment run to filter it into the
database. There is no central organization needed. From our survey, there do not
appear to be suitable open source implementations that could be easily adapted
to the needs of research.

Of all the measurement architectures we surveyed, MINER [1, 5] appears to
be the closest to our architecture. MINER is not available as open source soft-
ware, but [5] describes its architecture. MINER is Java-based and comprises a
measurement architecture as well as elements of what we refer to as the man-
agement framework. A client library provides an API for defining and running
experiments, which consist of invocations of tools. A core component is the server
component of the infrastructure and the mediator between the client library and
the measured network. A tool proxy component acts as a mediator between the
core component and the MINER tools. A tool proxy executes a scenario request
on a network node, starts the requested MINER tools, and then grooms the
measurement results back to the core.

The MINER tools are Java components that may provide measurement re-
sults directly, or may be wrappers around external libraries or applications that
do the actual measurements. MINER tools can be defined by the user.

Our management framework (OMF [16]) is decoupled from the measurement
aspect of experimentation. This makes each component more generic and flexible.
The MINER approach of providing a wrapper interface for existing tools is a
great idea. The main method to instrument existing applications with OML is
to directly modify their source code (e.g., iperf in Section 3.4). When these
sources are not available, it is easy to develop a short program to process the
application’s outputs and collect the resulting measurements using OML.

Emulab [19] is a large network emulator based on a set of computers that
can be configured into various topologies through emulated network links. Many
experimenters currently use Emulab testbeds to evaluate their research schemes.
It allows them to monitor and capture network traffic (packet headers or full
payload) on links and LANs within their experimental topologies. The capture
points, equivalent to OML measurement points, are either on the resource that
emulates a link, or on end-point resources. In both cases, the captured data
are stored as a local file on that resource. To analyse the experimental results,
the user has to retrieve the resulting file from all the used resources at the
end of an experiment. This simple scheme is limited to the measurement of

Measurement Architectures for Network Experiments 15

only network traffic, and does not allow the monitoring of any experiment’s
contextual variables (e.g., node location) or application integrated data (e.g.,
download/upload statistics for a peer-to-peer application).

PlanetLab [15] is a global research platform based on more than 1000 dis-
tributed computers, which are hosted by independent organisations. It is the
primary large-scale testbed used for experimental overlay and service oriented
systems (e.g., distributed storage, peer-to-peer content distribution). Multiple
services are currently deployed on Planetlab, which provide users with measure-
ments of their experimental slices and the whole testbed, such as CoMon [13],
or PlanetFlow [10]. CoMon provides different statistics (e.g., memory, disk us-
age) at a node or a slice granularity. However, it does not support collection of
application or experiment generated measurements. CoMon uses a client/server
design like the basic OML architecture. The processed measurements are made
available to the entire experimenter community via a distributed content deliv-
ery system. PlanetFlow also uses a client/server scheme. On each node, a client
entity captures all outgoing packet headers, then aggregates and classifies them
into flows. This process is akin to the OML client filtering. However PlanetFlow
does not provide any other client-side flow processing. These flow measurements
are centrally collected in a MySQL database accessible via a Web interface.

6 Conclusions

In this article we presented extensions to the versatile measurement library OML.
The new features that we presented allow the experimenter to extend the range
of possible measurements. In particular, we detailed the transparent integration
of a proxy server on the experiment node allowing measurements in a discon-
nected environment. This solution has been made possible by the addition of a
measurement proxy server on the mobile node within the existing measurement
framework. The first goal of this proxy is to buffer the measurement stream
without losing any information. We identified two main fields of application for
this measurement feature, a disconnected experiment and a shared control and
experiment network. We demonstrate the benefit of this new feature in the con-
text of a simple disconnected experiment during the 4th GEC and presented the
results in this article. Finally we extended this architecture with hierarchical
measurement collection and server-side filtering, which allows us greater control
over the measurement collection process, and with a feedback mechanism that
allows us to steer both experiments and the measurement process itself while
the experiment is running, based on the current measured context.

Acknowledgements

This work was achieved in the context of the Onelab2 projects funded by the
E.U. 7th Framework Program, and the GENI (Global Environment for Network
Innovations) initiative funded by the U.S. National Science Foundation.

16 Jolyon White et al.

References

1. MINER: The Measurement Infrastructure for Network Research. http://miner.

salzburgresearch.at/index.php.
2. NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool. http://

dast.nlanr.net/Projects/Iperf/.
3. OML: The OMF Measurement Library. http://omf.mytestbed.net/projects/

show/oml.
4. The 4th GENI engineering conference, March 2009.
5. C. Brandauer and T. Fichtel. MINER – a measurement infrastructure for network

research. In Testbeds and Research Infrastructures for the Development of Networks
& Communities, International Conference on, pages 1–9, Los Alamitos, CA, USA,
Apr. 2009. IEEE Computer Society.

6. B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard),
Jan. 2008.

7. M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky, and N. Thom-
bre. Continuous analytics: Rethinking query processing in a network-effect world.
In Fourth Biennial Conference on Innovative Data Systems Research (CIDR 2009),
Asilomar, CA, January 2009.

8. Google. Google maps. http://maps.google.com/.
9. B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. Bayen, M. An-

navaram, and Q. Jaconbson. Virtual trip lines for distributed privacy-preserving
traffic monitoring. In ACM MobiSys, 2008.

10. M. Huang, A. Bavier, and L. Peterson. PlanetFlow: Maintaining Accountability
for Network Services . Operating Systems Review, 40(1), 2006.

11. G. Ianaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The CoMo
white paper. Technical Report IRC-TR-04-17, Intel Research Cambridge, Sept.
2004.

12. G. Iannaccone. CoMo: An open infrastructure for network monitoring—research
agenda. Technical report, Intel Research Cambridge, Feb. 2005.

13. K. Park and V. S. Pai. CoMon: A Mostly-Scalable Monitoring System for Planet-
Lab. In ACM SIGOPS Operating Systems Review, 2006.

14. H. Petander. Energy aware network selection using traffic estimation. In Proc. of
MITCN 2009 workshop in ACM Mobicom conference, September 2009.

15. PlanetLab Consortium. Planetlab: An open platform for developing, deploying,
and accessing planetary-scale services. http://www.planet-lab.org/.

16. T. Rakotoarivelo, M. Ott, I. Seskar, and G. Jourjon. OMF: a control and man-
agement framework for networking testbeds. In SOSP Workshop on Real Overlays
and Distributed Systems (ROADS ’09), page 6, Big Sky, USA, Oct. 2009.

17. D. Raychaudhuri et al. Overview of the ORBIT Radio Grid Testbed for Eval-
uation of Next-Generation Wireless Network Protocols. In proc. IEEE Wireless
Communications and Networking Conference (WCNC), 2005.

18. Tobi Oetiker. RRDtool. http://oss.oetiker.ch/rrdtool/.
19. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. SIGOPS Oper. Syst. Rev., 36(SI):255–270, 2002.

http://miner.salzburgresearch.at/index.php
http://miner.salzburgresearch.at/index.php
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://omf.mytestbed.net/projects/show/oml
http://omf.mytestbed.net/projects/show/oml
http://maps.google.com/
http://www.planet-lab.org/
http://oss.oetiker.ch/rrdtool/

	Measurement Architectures for Network Experiments with Disconnected Mobile Nodes
	Jolyon White, Guillaume Jourjon, Thierry Rakatoarivelo, Maximilian Ott
	Introduction
	Background
	Testbed Architectures
	Experiment Node Architecture
	Client/Server Measurement Architecture

	Measurement in Dynamic Networks
	Mobile Nodes
	Throughput-Constrained Measurement
	Proxy Servers
	Results

	Further Extensions
	Hierarchical Measurement Collection
	Context-Driven Experiment Steering
	Context-Driven Measurement

	Related Work
	Conclusions
	References

