
For the best experience, open this PDF portfolio in
Acrobat 9 or Adobe Reader 9, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

U f GENI I t t ti dUse-cases for GENI Instrumentation and
Measurement Architecture Design

Prasad Calyam, Ph.D.
(PI – OnTimeMeasure Project #1764)(PI – OnTimeMeasure, Project #1764)

pcalyam@osc.edu

M h 31 t 2010March 31st 2010

What is different in GENI facility
measurements?measurements?

• GENI supports testbeds aimed at “clean-slate” re-design of the• GENI supports testbeds aimed at clean-slate re-design of the
Internet to overcome limitations of current Internet

Users have greater options/control on measurements• Users have greater options/control on measurements
– Measurement server software/hardware
– Advanced open-source/commercial instrumentation

M t i id (h t i)– Measurement service providers (who may customize)
– Measurements across wired/wireless aggregates
– Internet-scale measurements with “interesting” cross-traffic

2

Scratchpadp
• Goals for GENI Instrumentation and Measurement Architecture

(GIMA) Design
– Provide drill-down performance transparency of system and network resourcesProvide drill down performance transparency of system and network resources

at hop, link, path and slice levels
– Allow and make-it-easy for users (NOC staff, experimenter) to access and

control instrumentation and measurement functions involving interactions
between GIMS sub-servicesbetween GIMS sub-services

– Remove burden on researcher to become a network measurement infrastructure
expert so that researcher can better focus on the science in the experiments

– Provide performance transparency of the status of the individual GIMS sub-
service components and their interfaces with other sub-services

• For each sub-service (e.g., MP, MC, MAP, MO, MDA) in GIMA,
following information could be specified:

C biliti– Capabilities
– Input, Output
– Instrumentation components
– Software componentsSoftware components
– Schemas

3

Scratchpad (2)p ()
• Use cases from User point-of-view

– Interfaces: Web-pages, Command-line options
– Classification– Classification

• NOC monitoring
• Experiment monitoring
• Measurement utilities

• NOC Monitoring
– Capabilities: Availability, Heath Status, Diagnosis of perceived or

impending problems ---- context of the entire physical infrastructureg y
• Availability: Up/Down, Up-Good, Up-Acceptable, Up-Poor
• Health Status: Metrics and their levels for Hop, Link, Path and Slice

– Use cases:
• For a physical topology of Nodes {A, … Z} show me if any slice is mis-

behaving so that I can invoke “emergency shutdown” to swap it out
• Experimenter called NOC about non-responsiveness of resources or

unexpected behavior in a slice, notify status of user slice resourcesp , y
• We would like to keep meta-data of all the experiments, send us experiment

meta-data after each slice expires 4

Scratchpad (3)p ()
• Experiment Monitoring

– Capabilities: Availability, Heath Status, Diagnosis of perceived or
i di bl f h i liimpending problems ---- context of the experiment slice

• Availability: Up/Down, Up-Good, Up-Acceptable, Up-Poor
• Health Status: Metrics and their levels for Hop, Link, Path and Slice

Use cases:– Use cases:
• A slice has been setup for me, have I got all the resources I asked for
• Show me a dashboard of some or all of the resource performance

measurements as I run my experiments
• My experiment data shows inconsistencies, let me query the status of user

slice resources so that I can notify GMOC about it
• Provide me with an archive of some or all of the slice resource performance

measurements so that I can reference them during offline analysis of themeasurements so that I can reference them during offline analysis of the
data collected in my experiment after the slice expires

5

Scratchpad (4)p ()
• Measurement Utilities

– Capabilities: Active measurements and passive measurements ----
context of the experiment slice pertaining to research needscontext of the experiment slice pertaining to research needs

• Support tools that researchers of different problem domains will want to use
(e.g., traffic engineering researcher will want SNMP, TCP protocol
researcher would like throughput measurements from Iperf, video quality
researcher would like PSNR measurements from Evalvid)researcher would like PSNR measurements from Evalvid)

– Use cases:
• Setup up passive measurement taps at hops a, b, c
• Setup up active measurements on paths x, y, z using p, q, r toolsp p p , y, g p, q,

– On-demand or On-going (sampling patterns of periodic, random,
stratified random, adaptive)

• I am writing an event-driven simulation, at certain time points, I would like to
be notified of anomalies and forecasts of system and network performancebe notified of anomalies and forecasts of system and network performance
at hops a, b, c on paths x, y, z pertaining to tools p, q, r

• I am running an experiment to deploy a novel IPTV system protocol, provide
me with PSNR measurements of video quality between paths x, y, z (e.g.,
E l id t l th t ill d d d ti ti k t t)Evalvid tool that will need source and destination packet captures)

• Provide me with an archive of some or all of the slice resource performance
measurements that I requested as part of my experiment 6

Scratchpad (5)p ()
• Use cases from measurement-services designer point-of-view

– How will we authenticate NOC staff versus researcher and whatHow will we authenticate NOC staff versus researcher and what
measurement privileges can we assign to users based on roles

– What is the workflow for a user to interface with a measurement service
that manipulates the user’s slice resources

– What is the schema we will use to exchange various “messages”
between the measurement sub-services

– What is the schema we will support for users to query measurement
data using web-service clients

– What are the sorts of examples/templates of measurement service
usage that should be made available
?– ?

7

GMOC Topology-Entity Data Exchange Format Specification (version 0.1)

Page 1 of 5

GMOC Topology-Entity Data Exchange Format Specification

Version 0.1

Camilo Viecco – GMOC Senior Programmer

Introduction
The GENI Meta-Operations Center (GMOC), located at Indiana University, will design and craft the
protocols and processes needed to facilitate operational data exchange among GENI’s federated
infrastructure. The first is to provide a global view of GENI-wide resources and the second is to
provide a mechanism for emergency shutdown of sections or GENI. GMOC should also be able to
provide real time status of GENI elements and to provide historic views into these status and network
configurations.
GMOC has written a minimum requirements document for data to be exchanged between aggregate
managers and GMOC. The objective of this document is to provide the specification of how this data
will be formated for exchange. This document does not specify the mechanisms and/or protocols for
the actual transmission of the document.

Requirements
The use case for the data exchange scenario is that the aggregate manager will be able to generate
from their internal representation of the GENI infrastructure. The data exchange interface should be
able to collect all but the usage statistics as specified in the Strawman Document. This exchange
format should provide a 'snapshot' of the network as known by each data aggregator and/or
clearinghouse.
There are several topology description languages/formats available. However none has the concept of
slice nor a simple way to create arbitrary circuit hierarchies (starting from a top-bottom) manner. Thus
GMOC has created an ontology to describe topologies as defined by the internal format specification.

Assumptions
We will use the ontology as defined in the GMOC internal format specification. Further we make
assumptions For the internal topology an entity information the assumptions have been made in two
key areas: identifiers for the entities and the relationships between entities.

Identifiers, encodings, and field sizes
We assume that at slices and devices are uniquely identified in GENI-wide by a human readable
name. Names character set can be any unicode representable character set, but they must be encoded
using UTF-8. Names are limited in size to 128 octets (bytes).

GMOC Topology-Entity Data Exchange Format Specification (version 0.1)

Page 2 of 5

Principals are uniquely identified GENI-wide by a primary email address. Principals given names and
last names are limited to 40 bytes. The email address is limited to 128 bytes.

Locations are uniquely identified (in the scope of each exchange document) by a human readable
name.The minimal specification for a location is either the tuple (city, state_province, mail_code,
country) or by the tuple (longitude and latitude).
Organizations are uniquely identified (in the scope of each exchange document) by a human readably
name. These names are limited to 60 bytes.
Device's interfaces can be uniquely identified within a device by a device specific unique name. It is
assumed that this name binding will be remain unique for subsequent documents as long as there are
no changes in configuration of either the interface or the device.

Data model
In our data model every network device is considered a device. Devices can have a single parent
device. The graph of the parent-hood for devices is a forest (a set of trees) .Slivers are modeled as
virtual devices, that is a device with a parent device. Slices can be associated with both slivers and full
devices. Each device can be associated with one sliver at most, this the graph of the relationship of
slivers and devices is another forest.

A circuit is any network connection, between two or more devices. Circuits refer to any layer in the
network stack and can be connected to any interface. Circuits can be build a multiplicity of other
circuits. A circuit can be part of multiple circuits. The graph of circuit relationships is a disjoint set of
directed acyclic graphs.

Data format
The date exchange format is defined using the relax-NG compact syntax as follows:
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"
grammar {

start = element geni_aggregate {geni_aggregate-content}

geni_aggregate-content =
 attribute name {text},
 attribute public_key{text}?,
 element location {location-content}+,
 element contact {contact-content}+,
 element organization {organization-content}+,
 element point_of_presence {pop-content}+,
 element device {device-content}+,
 element slice {slice-content}*,
 element net_topology {net_topology-content}

 location-content =
 attribute name {text},
 (element address {address-content} |
 element geo_location {geo_location-content} |
 (element address {address-content} ,

GMOC Topology-Entity Data Exchange Format Specification (version 0.1)

Page 3 of 5

 element geo_location {geo_location-content}))

 address-content =
 attribute address {text}?,
 attribute city {text},
 attribute province {text},
 attribute country {text}

 geo_location-content =
 attribute latitude {xsd:double},
 attribute longitude {xsd:double}

 contact-content=
 attribute email_address {text},
 attribute last_name {text},
 attribute given_names {text},
 attribute phone {text}?,
 attribute organization_name {text}?

 organization-content=
 attribute name{text},
 element primary_contact_email {text},
 element location_name {text},
 element parent_organization_name {text}?,
 element url {text}?

 pop-content =
 attribute name{text},
 attribute location_name{text},
 element operator_org_name{text}?,
 element admin_org_name{text}?

 administrative_state-content =
 attribute state {"Planning"|"Provisioning"|"Available"|"NormalOperation"|
"Maintenance" |"Unknown" | "Decomissioned"}

 operational_state-content =
 attribute state {"Up" | "Degraded" | "Down" | "Unknown"}

 device-content =
 attribute name {text},
 element device_location {device_location-content},
 element operator_org_name {text},
 element admin_org_name {text}?,
 element device_type {text},
 element sw_version {text}?,
 element hw_version {text}?,
 element operational_state {operational_state-content}?,
 element administrative_state {administrative_state-content}?,
 element interface {interface-content}*

 device_location-content =
 element pop_name {text} |
 element parent_device_name {text}

GMOC Topology-Entity Data Exchange Format Specification (version 0.1)

Page 4 of 5

 interface-content =
 attribute name {text},
 element contracted_bw {xsd:double}?,
 element max_bps {xsd:double}?,
 element administrative_state {administrative_state-content}?,
 element net_addr {net_addr-content}*

 net_addr-content =
 element net_addr_type {text},
 element addr{text},
 element netmask{text}

 slice-content =
 attribute name {text},
 element operator_org_name {text},
 element primary_contact_email {text},
 element device_names {text}+

 net_topology-content =
 element network {network-content}+,
 element circuit {circuit-content}+,
 element circuit_hierarchy {circuit_hierarchy-content}*

 network-content =
 attribute name {text},
 element operator_org_name {text}?,
 element admin_org_name {text}?

 circuit-content =
 attribute name {text},
 attribute circuit_type {text},
 element channel {xsd:integer}?,
 element reserved_bw {xsd:integer}?,
 element vlan {xsd:integer}?,
 element circuit_endpoint {circuit_endpoint-content}*

 circuit_endpoint-content =
 attribute device_name {text},
 attribute interface_name {text}

 circuit_hierarchy-content =
 element upper_circuit_name {text},
 element lower_circuit_name {text}
 }

Semantic Validation
The relax-ng schema validates the data from a document perspective. However any file must also pass
the following semantic validation rules.

1. Every referenced email address must be part of a defined contact.

GMOC Topology-Entity Data Exchange Format Specification (version 0.1)

Page 5 of 5

2. Every location_name must reference a defined location.
3. Every referenced organization name must be part of a defined organization.

4. Every referenced pop name must reference a defined pop.
5. Every referenced device name must reference a defined device.

6. Every referenced interface must reference a defined interface.
If a document is valid and pass the semantic validation rules then applications should be able to parse
the document.

References
1. GMOC Discussion Strawman – Operational Dataset. January

2009.http://groups.geni.net/geni/attachment/wiki/GENIMetaOps/operational_dataset_v31.pdf.
2. Relax NG Website. http://www.relaxng.org

3. Internal Format specification.

GMOC Proposal: Use URN as GENI identifiers Version 0.3 (Draft)

Proposal: Use of URN's as GENI Identifiers (Version 0.3, Draft)

Camilo Viecco - Senior GMOC Programmer

Introduction

Identifiers are labels used within a system to uniquely name a particular entity. In GENI, the use of
GENI Global Identifiers (GGID) has been proposed to be the the identifiers for entities within GENI.
GGID's are described by three documents in the GENI documentation: The Slice Facilities
Architecture [1], the GENI identity control framework document [3] and the GENI Facility Design [2].

GGID are presumed to provide a foundation for a 'correct and secure system'[2]; however as defined in
the GENI documentation they neither form persistent identifiers nor provide provable authentication.
This document tries to document these problems and propose a different approach for identification of
GENI resources.

Motivation

GGID, as currently defined, are fundamentally flawed as they have been given two distinct and
incompatible functions. GGID are supposed to both identify an object (or resource) and authenticate
the object (or resource). To illustrate this, lets take a look at the definitions of identifiers and GGID in
the current GENI literature:

From the Slice Facilities Architecure Document[1] (section 4):

The SFA defines global identifiers (GID) for the set of objects that make up the federated system. GIDs
form the basis for a correct and secure system, such that an entity that possesses a GID is able to
confirm that the GID was issued in accordance with the SFA and has not been forged, and to
authenticate that the object claiming to correspond to the GID is the one to which the GID was
actually issued.

Specifically, a GID is a certificate that binds together three pieces of information:

 GID = (PublicKey UUID1, Lifetime)

From the Facilities Design Document[2] (section 2.2.1):

The GMC defines unambiguous identifiers—called GENI Global Identifiers (GGID)—for the set of
objects that make up GENI. GGIDs form the basis for a correct and secure system, such that an entity
that possesses a GGID is able to confirm that the GGID was issued in accordance with the GMC and
has not been forged, and to authenticate that the object claiming to correspond to the GGID is the one
to which the GGID was actually issued.

From the identity Document[3] (similar rationale than [2]) :

1 This footnote is NOT present in the original text. UUID are 'Universally Unique Identifiers' and their generation is
defined in both a ITU recommendation [7] and the functionally equivalent RFC 4122 [8]. UUID are 128 bit numbers
that if generated cooperatively have a very low probability of clashing.

Page 1 of 5

GMOC Proposal: Use URN as GENI identifiers Version 0.3 (Draft)

An identity, to my mind, has 2 simple properties:

 If a principal asserts an identity, anyone in the system can confirm that directly with the principal.
That is, I can prove that I am who I say I am.

 Each identity maps to one principal, so two elements in the system with information tied to the same
identity are sure it's information about the same principal. That is, identities are impossible to forge.
(Or impossible to forge with very high probability).

While the specifics of the implementation of this ideas is incompatible, the really troublesome issue is
the fact that identity and authentication are being bundled together. These ideas are incompatible
because an identity is nothing more than a persistent label on an object while authentication is the
process of validating some information that presumably was created by a certain object (more explicitly
confirming the identity of a person (or entity), or the origins of an object). Simultaneous authentication
and identification are incompatible because authentication is the validation of a mapping between an
identity and some other object (usually a public key or a token).

GGID are also problematic because, as currently defined, they limit the mechanisms and techniques
used by entities within GENI. In general, two techniques are used to prove identity in remote system:
the use of shared secrets and the use of public key cryptography. When using shared secrets
authentication is done by proving to the authenticating user that the authenticating party knows the
shares secret. Also the protocol to prove this should: prevent the any third party from gaining much
knowledge about the secret and prevent replay attacks.

Authentication via via cryptographic techniques involves at least a three step process. First, the entity
that wants data to be authenticated signs the authenticated data with its private key (we are assuming
that this entity has generated beforehand a public key pair). Second, the entity authenticating the object
must acquire in a trustworthy manner the public key of the signing party. Third, the authenticating
object validates the signature of the data with the now know public key. Now, assuming that the
cryptographic primitives are secure, the what the authenticating entity validates is that its the public
keys of the signed data. What makes the authentication work is the trustworthy mapping (from the
authenticating party perspective) of the entity identity to the public key.

Authentication however does not necessarily require for the authenticating entities to prove directly to
each other their identities. It is also common to use a trusted third party by the authenticating party to
authenticate users. This trusted third party knows how to authenticate the user/entity.

GGID are currently defined as X.509[9] certificates [2]. Thus we are not only limiting the mechanisms
to to authentication but we are also binding the technology do to authentication. What we need is to
define a identity scheme to be used by GENI and a recommended technology to to authentication. The
discussion of technologies for authentication is out of the scope of this proposal

Why not use UUID instead?

The previous discussion would can lead to a simple solution (hinted by the GENI Facility Design
Document). Use UUID as the GENI identifiers and keep the GGID not as identifiers but as the
authentication technology for GENI. From the Facilities Design Document[2]: Specifically, a GGID is
represented as an X.509 certificate [X509, RFC-3280] that binds a Universally Unique Identifier

Page 2 of 5

GMOC Proposal: Use URN as GENI identifiers Version 0.3 (Draft)

(UUID) [X667] to a public key.

While this solution might seem to satisfy most of the issues addressed above several problems several
problems exist.

1. UUID are neither can be neither unique or universal. A malicious user (or a subverted system)
can generate clashes in the UUID name-space. There is no way to specify hierarchy in the
UUID name-space.

2. GENI would require a correct high availability complete registry. Policy rules are usually
specified in terms of human readable names, therefore each authorization procedure would need
to check the GENI registry at each authorization decision. Also this registry must be correct and
updated so that all this requests can be completed correctly. This registry is another single point
of failure of the system. If someone can impersonate the registry, it can impersonate any GENI
entity.

3. The registry name (as defined) uses the same separators for GENI hierarchy as what is
commonly used in the Internet for administrative hierarchy. This is problematic as it makes
necessary for GENI to make names for each node even with nodes have already name well
known name bindings.

4. Complicates auditing. Accurate auditing of GENI would either require a historic registry or
auditing both the UUID and the human readable name as reported by the registry.

5. Prevents inter-operation with other authentication mechanisms. No other commonly used
authentication system used UUID as user identifiers. Therefore even if we abandoned GGID as
being certificates inter-operation would require the addition of another trusted mapper from
UUID to the interface naming scheme.

So using UUID solve part of the GGID problem but it still very problematic. The UUID to human
readable name mapping complicates the system and does not provide any useful features. What is
needed is a form of human readable and compatible identifiers.

Proposal

Human readable names simplify interpretation and there are many standards to define human readable
names. For GENI we are proposing to use two types of identifiers: Uniform Resource Names (URN)
[4] and email addresses. URN can be used to identify both resources and users, email addresses are
only used to identify users. For URN we also propose using the publicid URN namespace [5], using
IDN. This namespace is suggested as using it does not require any registration of any namespace with
IANA.

The rationale for this proposal us that URN provide a well established, standarized, extensible and
human readable name-space in which arbitrary object can be made. Further URN provides
implementation specific details such as the valid character set and encoding of the names.

URNs also provides a mechanism to encode other non-geni identifiers so that interafacing other
systems does not require additional mappings.

Page 3 of 5

GMOC Proposal: Use URN as GENI identifiers Version 0.3 (Draft)

For encoding URN we first transform the resource name into a string that can be then transformed into
a URN via the publicid encoding process. We suggest the following naming convention (in perl regular
expression syntax for the encoding string:

“IDN [toplevelauthority][\/\/sub-authority]* [resource-type] resource-name”

This would lead to the following urn schema in the public id namespace (Using the transformation in
[5]:

“urn:publicid:IDN+toplevelauthority[:sub-authority]*[\+resource-type]\
+resource-name”.

Examples of the transformations can be seen in table 1.

Resource Identifier
Type

GENI Identifier

User cviecco at the planetlab
namespace

urn: urn:publicid:IDN+planet-lab.org+user+cviecco

User cviecco at the iub.edu
delegation in the planetlab
namespace

urn: urn:publicid:IDN+planet-lab.org:iub.edu+user+cviecco

Planetlab node:
pl2.ucs.indiana.edu

urn urn:publicid:IDN+planet-lab.org+node+pl2.ucs.indiana.edu

Interface eth0 in planetlab
node pl1.ucs.indiana.edu

urn urn:publicid:IDN+planet-lab.org+pl2.ucs.indiana.edu:eth0

Internet2 circuit: I2-ATLA-
JACK-I2-05128

urn urn:publicid:IDN+internet2.edu+circuit+I2-ATLA-JACK-
I2-05128

Table 1: URN name examples for the proposal

By using urn in this manner we can have a standardized format for identifiers. Further it allows for easy
parsing of the name of the resource and the object authority(ies). It also allow the encoding of
authorities using characters in the valid IDN character set.

Conclusion

We have proposed abandoning GGID's as identifiers in GENI. We have proposed using URN and email
addresses as identifiers for GENI. We have shown how this identifiers can be written and the benefits
of using a human readable namespace for identifiers. We have also proposed a standarized name
convention for GENI identifiers.

Page 4 of 5

https://db.grnoc.iu.edu/new-ckt/d_ckt.cgi?net=14&ckt_id=384562

https://db.grnoc.iu.edu/new-ckt/d_ckt.cgi?net=14&ckt_id=384562

https://db.grnoc.iu.edu/new-ckt/d_ckt.cgi?net=14&ckt_id=384562

https://db.grnoc.iu.edu/new-ckt/d_ckt.cgi?net=14&ckt_id=384562

GMOC Proposal: Use URN as GENI identifiers Version 0.3 (Draft)

Bibliography

1. Larry Peterson (Editor), Slice Facilities Architecture v 1.10.
http://groups.geni.net/geni/attachment/wiki/GeniControlBr/v1.10%20%20080808%20%20sfa.p
df. 2008.

2. GENI Facility Design. http://www.geni.net/GDD/GDD-07-44.pdf .March, 2007

3. Ted Faber. GENI Identity Document. http://groups.geni.net/geni/wiki/GeniControlIdentity .
January 2008.

4. R. Moats. RFC 2141: URN Syntax. http://www.faqs.org/rfcs/rfc2141.html May 1997.

5. Norman Walsh, John Cowan and Paul Grosso. RFC 3151: A URN Namespace for Public
Identifiers. http://www.ietf.org/rfc/rfc3151.txt . August 2001.

6. IANA. Uniform Resource Names Namespaces. http://www.iana.org/assignments/urn-
namespaces/ . December 2008.

7. ITU Recommendation X.667. http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf .
September 2004.

8. Paul J. Leach and Michael Mealling and Rich Salz. RFC 4122. A Universally Unique Identifier
(UUID) URN Namespace. http://www.faqs.org/rfcs/rfc4122.html . July 2005.

9. David Cooper, Stefan Santesson, Stephen Farrel, Sharon Boeyen, Rusell Housley and Tim Polk.
RFC 5280. Internet X.509 Public Key Infrastructure Certificate.
http://www.faqs.org/rfcs/rfc5280.html May 2008.

Appendix: Proposed URN representation of Internet2 and National
Lambda Rail (NLR) resources.

While Geant2 has a URN namespace assigned to them, neither Internet2 nor the NLR such namespace
assignment. Therefore is it necessary to use the publicid namespace to refer to objects in these two
namespaces in a uniform way.

The following string representation of backbone resources is suggested:

“IDN $BACKBONE-IDN $RESOURCETYPE $RESOURCENAME”

which translates into the publicid name-space as:

“urn:publicid:IDN+\$BACKBONE-IDN\+$RESOURCETYPE\+\$RESOURCENAME”

For example the internet2 circuit I2-ATLA-JACK-I2-05128 would be transformed as string as:

“IDN internet2.edu//circuit I2-ATLA-JACK-I2-05128”

which translates into the publicid name-space as:

“urn:publicid:IDN+internet2.edu:circuit+I2-ATLA-JACK-I2-05128”

Page 5 of 5

https://db.grnoc.iu.edu/new-ckt/d_ckt.cgi?net=14&ckt_id=384562

http://www.faqs.org/rfcs/rfc5280.html

http://www.faqs.org/rfcs/rfc4122.html

http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

http://www.iana.org/assignments/urn-namespaces/

http://www.iana.org/assignments/urn-namespaces/

http://www.ietf.org/rfc/rfc3151.txt

http://www.faqs.org/rfcs/rfc2141.html

http://groups.geni.net/geni/wiki/GeniControlIdentity

http://www.geni.net/GDD/GDD-07-44.pdf

http://groups.geni.net/geni/attachment/wiki/GeniControlBr/v1.10%20%20080808%20%20sfa.pdf

http://groups.geni.net/geni/attachment/wiki/GeniControlBr/v1.10%20%20080808%20%20sfa.pdf

		Proposal: Use of URN's as GENI Identifiers (Version 0.3, Draft)

		Camilo Viecco - Senior GMOC Programmer

		Introduction

		Motivation

		Why not use UUID instead?

		Proposal

		Conclusion

		Bibliography

		Appendix: Proposed URN representation of Internet2 and National Lambda Rail (NLR) resources.

Architectural Design and Specification
of the

INSTOOLS Measurement System

James Griffioen, Zongming Fei, and Hussamuddin Nasir
Laboratory for Advanced Networking

University of Kentucky
Lexington, KY 40506

December 2009

1

Contents

1 Background 3

2 Design Goals 4

3 Architecture Overview 6

4 Architectural Components 8
4.1 Setup/Teardown . 9
4.2 Data Capture . 10
4.3 Measurement Control . 11
4.4 Data Collection . 11
4.5 Data Storage . 12
4.6 Data Processing . 12
4.7 Data Presentation . 13

4.7.1 Creating Graphs and Tables . 13
4.7.2 The Web Interface . 13

4.8 Access Protection . 14

5 Implementation Status 14
5.1 Instrumentation List . 15
5.2 Web Interface . 15
5.3 Security Considerations . 17

2

1 Background

Spiral 1 of the GENI project has primarily been focused on the problem of building control frame-
works [8]. Control frameworks form the basis for the GENI network, allocating and initializing the
network resources (slivers) used by a GENI experiment (slice). However, allocating and initializing
a slice’s resources is only the first of several steps in an experiment.

An important, and perhaps equally difficult step, is the step of deploying an instrumentation
and measurement system that assists a user in monitoring and capturing the behavior of his
or her network (slice). Not only is the instrumentation and measurement system necessary for
measuring the system (e.g., to numerically compare its performance to other alternatives), but
it is needed to track and understand the network’s behavior (e.g., to determine if the network is
executing correctly or not).

The process of monitoring an experiment can roughly be divided into three stages: (1) In-
strumentation refers to the stage in which data capture tools are deployed at particular points in
the network to capture information of interest to the user, (2) Measurement refers to the stage in
which data is collected from a running experiment and (possibly) combined with other data to form
a more integrated data set, and (3) Presentation refers to the stage in which the data is processed
into a semantically meaningful visual display of the data that is then presented/displayed to the
experimenter.

It should be noted that a variety of hardware and software tools already exist that can be
use to instrument various components of the network components of the network. Tools such
as tcpdump [5] and port monitors on routers can be used to capture packets while SNMP-based
software [10] can be used to capture network state information. Moreover, GENI projects such as
the GENI Instrumentation and Measurement System (GIMS) at the University of Wisconsin [12, 9]
are working on new high-performance link sensors that can capture and record packets at line-
speed. Similarly, software exists to collect the captured data, process it and even present it in
fancy graphical displays.

However, at present, relatively little attention has been given to the problem of helping experi-
menters (users) set up and operate the instrumentation and measurement infrastructure needed
to monitor their experiments. Much like control frameworks make it easy to specify, configure,
and deploy network infrastructure (i.e., slices), users need a instrumentation and measurement
framework that make it easy for them to specify, configure, and deploy the instrumentation and
measurement infrastructure needed to monitor and observe the behavior of their network.

The Instrumentation Tools (INSTOOLS) project at the University of Kentucky aims to fill this
gap, by automatically setting up and initializing experiment-specific network measurement and
monitoring capabilities on behalf of users. Much like the control frameworks try to hide the details
of resource allocation and setup from users, the goal of the INSTOOLS project to is to hide the
details of instrumentation setup from users so that users do not need to be experts in system
administration or in network management in order to “see” what is going on with their experiment.
Instead, our instrumentation tools are designed to provide users with an easy-to-use web-based
user interface that use tables and graphs to visualize the runtime behavior and measurement data
collected from the user’s experiment.

The goal of the INSTOOLS project is not to reinvent the wheel (i.e., reinvent or improve on
existing instrumentation tools and measurement software), but rather to develop ways to automat-
ically deploy these tools, automatically collect data from the tools, and then process and display

3

the data to the users in visually useful ways. In other words, our goal is to leverage these tools on
the user’s behalf, automatically setting up a complete instrumentation and measurement infras-
tructure for the user without the need for the user to learn or understand the details of all these
various tools.

It should be noted that a related document, namely the GIMS Requirements and Specifications
for the Instrumentation and Measurement Systems for GENI [9] is complimentary to the system
described in this report. While the GIMS document outlines the components that comprise an
instrumentation and measurement system, the primary focus is on defining the sensors used to
capture data (instrumentation) and on archiving the data collected by the instrumentation com-
ponent. In that sense, the architectural design we present in this report is complimentary to the
specification described in the GIMs report. As noted earlier, our goal is to leverage instrumentation
infrastructure such as that described in the GIMs report and enhance it by adding the automation
components that make it easy to specify and deploy an instrumention and measurement system.

2 Design Goals

The overall goal of the INSTOOLS project is to make it easy for users to set up and use instru-
mentation and measurement tools in their experiments. Users should not need to be experts in
the use of the plethora of existing instrumentation tools in order to monitor the behavior of their
experiments. Consequently, our design focuses on the problem of selecting, deploying, initializing,
running, and displaying output from existing instrumentation tools on the user’s behalf.

Our design is motivated, in part, by the desire to make the GENI infrastructure usable by
students in networking and operating systems classes. Because students are not (in general)
seasoned network or system administrators, they do not necessarily know what information is
even available, let alone how to instrument the system to obtain that information. Consequently,
a key assumption of our system is that the user will likely offer little help in the way of making
instrumentation decisions. (In fact, even experienced network/system administrators usually prefer
it if they can make fewer decisions about what to monitor, using defaults for most decisions).
As a result, it is our task to make intelligent decisions–or at least reasonable guesses–about
the instrumentation that will be most beneficial to the user. While some users will have unique
instrumentation requirements, most users–particularly novice users like students–will benefit from
a common set of instrumentation functionality. Although hooks need to be available to capture
unique information in certain experiments, the primary focus of our INSTOOLS project is on the
design of a generally-useful network instrumentation and measurement infrastructure that can be
deployed as part of every experiment.

Our design also leverages our experience with the Edulab [16, 6] system which was designed
to help networking and operating system students monitor their running Emulab experiments. We
observed that network state information is typically more important than packet trace information
when it comes to identify the cause of problems. While there are times when it is important
to capture and examine packet traces, many problems can be identified and corrected simply
by looking at network state such as routing tables, packet counters (e.g., interface counters),
cache entries (e.g., ARP, DNS, and NAT tables), processor load averages, memory statistics, host
configurations, firewall rules, etc. Because network state is particularly useful and often easier to
capture and record than packet traces, our focus is slanted more toward capturing network state

4

than it is toward capturing packet traces.
Given these assumptions, we defined several design goals for the system:

Ease-of-Use:We want the system and interface to be user-friendly – helping users with the exper-
iment without burdening the users. The monitoring facilities should be set up on the user’s
behalf so that users do not need to deploy any software or services. We want a very sim-
ple interface without requiring users to select among many possible “options”. The interface
should show what most users want, with the potential to be extended to include information
needed by unique experiments.

Slice-specific Monitoring: Most users are primarily interested in the behavior and performance of
their experiment, with little (or at least less) desire to know about the performance of the
GENI testbed as a whole. Consequently, our focus is on developing slice-specific monitoring
infrastructure, that is tailored to capture, record, and display only information associated
with that slice. Although users may opt to make available some or all of their information to
globally-shared monitoring services and repositories (e.g., the GMOC [2]), our primary focus
is on developing a slice-specific monitoring framework.

Leverage Existing Tools: We want to leverage off-the-shelf software as much as possible, instead
of starting everything from scratch. Over the years, many monitoring tools have been de-
veloped. Most common monitoring tasks can be performed using standard tools that are
well-documented and can be easily incorporated into the architecture.

Leverage Control Framework Functionality: Instead of designing a completely new system to over-
see and allocate “measurement resources”, our system should leverage and build on the
resource allocation capabilities provided by the existing GENI control frameworks. In other
words, the instrumentation and measurement infrastructure should itself be built from re-
sources generally available in GENI.

Separate Measurement Plane:We want to minimize the load imposed on the data-plane by the
measurement plane. Some monitoring operations, such as capturing detailed packet traces,
can impose a heavy load on the network if the data must be centrally processed or centrally
archived. We want measurement traffic to interfere as little as possible with the data plane of
the running experiment. Moreover, even though some types of instrumentation (e.g., packet
counters) do not produce large amounts of data individually, in aggregate the load could
affect an experiment if the measurement information has to compete with the data plane
traffic.

Virtualization Support: We want to be able to monitor both physical and virtual resources. As vir-
tualization becomes an essential element of next generation network testbed environments,
the measurement infrastructure should be able to get information about virtual interfaces
offered by virtual routers. Unfortunately, much of the existing monitoring software is not yet
“virtualization friendly”. Also we want to make sure that users only have access to measure-
ment data of their own experiment, even if it is running on a virtualized machine sharing a
physical node with other users.

Scalability: We want to make the monitoring tools scalable. Multiple experiments may be running
simultaneously and can potentially have measurement data to be collected. We want to have

5

a separate measurement node for each experiment so that the capacity of the system for
processing the measurement data increases proportionally to the number of the experiments
having measurement data to be collected.

Extensibility: We want to be able to incorporate new instrumentation as it becomes available.

3 Architecture Overview

The INSTOOLS system is designed to automatically create the instrumentation and measurement
infrastructure needed to monitor experiments. The resulting instrumentation and measurement
network is responsible for capturing measurement data from that slice, combining and processing
the measurement data, and presenting the data to users.

Because users are primarily interested in measurement data associated with their experiment,
the INSTOOLS system dynamically creates experiment-specific instrumentation and measure-
ment infrastructure for each experiment. Providing each experiment with its own instrumentation
and measurement infrastructure has several benefits. First, it can be tailored to the topology and
needs of each experiment, rather than requiring all experiments to get their monitoring data from
a single (generic) shared instrumentation and measurement infrastructure. Second, it means that
an experiment’s measurement data can be kept private to the experiment – never being stored
or processed by resources outside of the experiment. Third, the monitoring load imposed by
experiments is distributed to the nodes that comprise the experiments, rather than placing the
monitoring burden on a single shared infrastructure. Moreover, monitoring traffic can be kept lo-
cal to the experiment. Together, distribution and localization of the monitoring load improves the
overall scalability of the system.

The INSTOOLS software is invoked by the control framework each time a new experiment
(slice) is created so that slice-specific instrumentation and measurement infrastructure can be
created along with the normal slice infrastructure. Each instrumentation and measurement net-
work is constructed from available GENI resources that are allocated when the experiment starts
and deallocated when the experiment ends. We utilized two types of GENI resources to create
the instrumentation and measurement networks: (1) data capture nodes, and (2) general purpose
processors.

We call the data capture nodes Measurement Points (MPs). A Measurement Point is a GENI
resource that is capable of capturing measurement information. For example, a network router in
the user’s experiment might act as an MP, capturing network state information such as routing table
information, ARP cache information, or other SNMP MIB information. An MP could also capture
packet trace information such as tcpdump-style traces[5] or netflow traces[11]. Alternatively, an
MP could be an end system, a sensor-net node, a mobile (adhoc) node, or any other type of
resource that is part of the user’s slice. In addition, an MP could be an allocatable resource that
is not part of the user’s experiment such as a high-performance packet capture device located on
the GENI backbone capable of snooping packets from the user’s slice.

Data captured by the MPs is then sent to one or more general-purpose nodes where the data
is stored, processed, and made available for presentation. We call these nodes Measurement
Controllers (MCs) (see Figure 1). The MCs for an experiment are automatically created for the user
by the INSTOOLS software when the experiment is created. Whenever possible, data transmission
between the MPs and the MC occurs over an external channel, one that is not part of the user’s

6

experimental network–i.e., the network that connects the resources (slivers) in the user’s slice. For
example, in Emulab/ProtoGENI-based aggregates communication between the MPs and the MC
occurs through a separate “control interface” on each node. In Emulab-based systems the control
interface connects to a distinct (physical) “control switch”. In ProtoGENI systems, a node’s normal
IP interface acts as its “control interface” (with GRE tunnels providing the “experimental network
interfaces”).

Figure 1: Each experiment/slice has its own MC and instrumentation and measurement network.

An experiment may have more than one MC. Multiple MCs may be required for scalability
reasons and/or for management reasons. Because experiments can span multiple aggregates
that are each under different authoritative control and (typically) offer different types of resources,
our INSTOOLS architecture creates one MC for each aggregate in the experiment (slice). Creating
one MC for each aggregate ensures that the measurement plane traffic stays within an aggregate,
improving scalability. It also enables MCs to offer aggregate-specific monitoring features that are
tailored to the type for resources offered by the aggregate. Additional MCs may be created within
an aggregate to further enhance scalability.

Because an experiment may have multiple MCs, our INSTOOLS architecture includes an MC
Portal through which users can interact with all the MCs that comprise their experiment. Similar
in spirit to the ProtoGENI Clearinghouse which provides a single entry point into the system (but
does not allocate any resources), the MC Portal does not perform any instrumentation or mea-
surement task. Its sole purpose is to redirect requests for measurement information to the MC in
the appropriate aggregate. In that sense the MC Portal provides users with a a single interface
to all the MCs that comprise their experiment. Moreover the MC Portal can redirect users to the
global archival server to locate archived (shared) measurement information. The architecture is
illustrated in Figure 2.

Although MPs and MCs are at the heart of the INSTOOLS architecture, their existence is
largely hidden from users by the control framework and MC Portals. MCs are automatically created

7

Figure 2: The MC Portal provides users with a single point of entry to their measurement data.

and initialized by the control framework (without user intervention) when the experiment is created.
Because the MC Portal provides a single interface to all the MCs in an experiment (akin to a
mashup of MCs), users only see the MC Portal not the individual MCs. When users use the MC
Portal to enable and disable measurement points in the experiment, they need not know that the
MCs are starting and stopping MPs to capture the specified data.

4 Architectural Components

Conceptually the INSTOOLS system is divided into seven components: (1) Setup, (2) Capture,
(3) Control, (4) Collection, (5) Storage, (6) Processing, (7) Access, and (8) Presentation. These
seven components are mapped onto the infrastructure described in the previous section (Sec-
tion 3). Because they are logical components, they can be mapped to the infrastructure in many
different ways. We currently map these functions to the infrastructure in the following way. Setup
(and Teardown) is performed by the control framework when the experiment/slice is created–in our
case, ProtoGENI [4] carries out this task. Data capture is the responsibility of the MPs. Control
over what data is collected and when it is collected is determined by the MC which issues com-
mands that the MPs carry out. Data collection is the responsibility of the MCs, which initiate the
transfer of data from MPs to the MC. Data storage is the combined responsibility of the MPs, MCs,
and shared archive repository. Data processing occurs at the MC. Access protection is also the
responsibility of the MC, while presentation of the data is the result of work done by a web server
and database on the MC creating web pages that are then rendered by the user’s browser. Their

8

relationships and where they are implemented are illustrated in Figure 3. The following sections
briefly describe the role and design of each of these components.

Net 1
MRTG
Daemon

MRTG
Config file

RRD

Managemen

Web
pages

Access
control

Web
Server

MIBs
etc

SNMP
Daemon

Remote
Shell

Net 2

Net 3

−Memory Usage
−Process Tables
−Etc

Need Info:

Client
SSH

SNMP walk

Measurement Controller (MC)

Control

Measurement Point (MP)

Capture

PS

Processing

rrd tool

etc
graphing

Data

Collection
Control
Software

Content

System

User

Portal to

MCs

Archive
Repository

Archive
Server

Collection Processing

Access

Presentation

Storage

Figure 3: The Architectural Components of the INSTOOLS Toolset

4.1 Setup/Teardown

Users create new experiments by selecting GENI resources from the GENI clearinghouse [14]
list. The desired resources are specified as an RSPEC [15] that is given to the component man-
agers [1] executing in each of the aggregates [14]. It is the component managers’ job to set up
and initialize the resources specified in the RSPEC.

To automatically create the instrumentation and measurement infrastructure on the user’s be-
half, we added code to the component manager to invisibly change the RSPEC before it is pro-
cessed by the component manager. In particular, we look for an available sliver in the aggregate
that is capable of serving as the MC and we insert that node into the RSPEC. As a result, the com-
ponent manager automatically creates and initializes an MC node as part of the slice. Because
we need special software on the MC, we configure the RSPEC to use a custom OS Kernel on the
MC node–one that has been loaded with the INSTOOLS software. An alternative would be to load
the custom MC code after the default kernel boots up.

Because the MC is part of the slice, teardown of the measurement system is greatly simplified.
When the user tears down a slice, the MC is automatically removed along with the other resources
in the slice. If the user wants to retain measurement data from the experiment, it is the user’s
responsibility to copy the data off of the system before the slice is deleted. Our intent is that the
user interface will offer methods to selectively copy data from the MC to the shared data archive
repository.

Note that our current design does not allow the user to specify in the RSPEC which measure-
ment data should be collected. Instead, it only allows the user to select whether the measurement

9

infrastructure is required or not. If not, the MC will not be automatically added. When the measure-
ment infrastrucutre is created, users can use the GUI provided by the presentation component to
specify the measurement data they want to collect.

4.2 Data Capture

Automatically setting up monitoring services on behalf of the user requires information about the
topology and the types of resources (slivers) used in the experiment. Information about the types
of slivers helps determine which (monitoring) software or services should be used to monitor the
sliver. Topology information is needed to identify the links to be monitored. For example, in the
ProtoGENI control framework, topology and sliver information can be obtained from the manifest
returned by the aggregate manager.

To enable automatic data capture at slivers, we enhance the software installed on a sliver by
adding a variety of off-the-shelf and custom monitoring software/services, and then modify the
experiment creation code in the control framework to configure and launch the added monitoring
software on each sliver. Because we expect that our monitoring services will be used by almost all
of our users (i.e., students), we decided to make the monitoring software and services a standard
part of every sliver. Users can specify that they do not want monitoring enabled, but the monitoring
software is loaded by default.

The monitoring software that we add to each sliver includes an SNMP [10] daemon, various
off-the-shelf system/network management programs (e.g., tcpdump [5], netflow [11], etc), our own
custom monitoring code (based on the pcap library [3]) to collect certain packet statistics not cap-
tured by the SNMP daemon, and a remote access daemon to execute the capture software. For
the most part, the software we add to each sliver is targeted toward IP-based network protocols.
Because the assignments/projects that we assign in our network class are usually based on IP
protocols, this software is sufficient. However, if GENI is to be used as a testbed for next gen-
eration Internet protocols, experiment-specific capture software may need to be installed during
slice creation to capture packets that are not IP-based. Fortunately, the INSTOOLS infrastructure
is independent of the capture software, allowing us to install new tools as they become available.
Although we do not currently provide an interface or API that would allow users (or programs) to
select the capture software to be installed on a measurement node, it is something that could be
added.

In addition to capturing network information, we also capture operating system information
such as CPU load, memory load, routing table configurations, ARP caches, loaded modules, etc.
This data is captured via standard operating system tools like ps, vmstat, etc, and also via SNMP.

Having installed software to capture the desired measurement information, the next step is to
add code that dynamically configures the capture software and services on a sliver before starting
the sliver. To achieve this, we use information obtained from the manifest to identify the slivers
to be monitored and then dynamically create configuration files for the SNMP daemon and other
capture software on each monitored sliver–tailored to the network links used by the sliver.

It should be noted that ProtoGENI not only supports physical nodes, but also virtual nodes.
Virtual network interfaces appear and behave differently than physical network interfaces. As
a result, conventional SNMP implementations–that are unaware of virtualization–are not able to
collect information related to virtual nodes and their interfaces. In such situations, we have had
to develop our own code to capture the desired information–e.g., virtual interface stats–and make

10

the information available via a standard SNMP server.

4.3 Measurement Control

The capture software is installed and configured with a set of default settings that we believe are
generally useful to a wide range of users. However, we also recognize that users will want to
dynamically control the information being captured. To help users specify the data that should
be captured, our INSTOOLS software includes a control GUI that allows users to select which
information they would like to capture and display. The control settings entered by the user are
used by the MC to enable, disable, or modify the configuration files of the associated capture
software on the MPs. In our current design this is done by issuing ssh commands from the MC
to the MPs. This allows the MC to change configurations and restart deamons, or to dynamically
start and stop tasks (e.g., tcpdump).

4.4 Data Collection

The objective of the data collection component is to retrieve information from the MPs being moni-
tored, transferring the data to the location(s) where it is needed or where it is to be stored/archived.

A variety of collection methods are possible. In keeping with our goal of leveraging existing,
tested, robust software, our current collection component uses two methods to retrieve data from
the MPs: (1) SNMP and (2) ssh/scp.

First, we decided to use the SNMP protocol to retrieve MIB tables from the various MPs that
comprise the system. We selected the SNMP protocol as our primary retrieval method because
of its generality. Even when used in its standard configuration, the SNMP protocol can be used
to retrieve a variety of different types of information from routers, ranging from routing tables, to
packet counts, to CPU load. Moreover, by adding new MIBs, SNMP can be used to retrieve almost
any type of information a user would like to collect.

Second, we use secure copy (scp) or secure shell (ssh) to retrieve data that cannot be obtained
via SNMP. Like the SNMP protocol, ssh/scp services are typically available on most routers and
end hosts. Moreover, the ability to execute arbitrary commands on an MP or to copy arbitrary data
from an MP to the MC gives us complete flexibility to retrieve any type of data from the MP.

Ideally, measurement data will be collected from the MPs over a dedicated measurement net-
work as shown in Figure 1. Using a dedicated measurement plane ensures that the monitor-
ing system does not interfere with an experiment’s data plane traffic. However, it is difficult to
guarantee that the measurement plane will be completely independent of the data plane. For
ProtoGENI experiments that utilize Emulab resources, separation is possible. For example, our
current implementation utilizes Emulab’s control network as the measurement plane, separating
measurement data from the experiment’s data plane (which is constructed using VLANs on the
experimental switches). Because each slice has one MC per aggregate, measurement data is
always collected locally within the aggregate. We chose this design because it limits the scope
of the measurement network. Creating a dedicated global measurement network with sufficient
bandwidth to support an instrumentation system–particularly one that includes high-speed packet
capture devices–would be difficult. By limiting the scope of the measurement network to the local
aggregate, we reduce the potential for competition between the data plane and the measurement

11

plane. Moreover, additional MCs can be created within an aggregate to further improve the sepa-
ration between the measurement and data planes.

4.5 Data Storage

The data storage task is broken into three parts: (1) captured data is initially stored (temporarily)
at the MPs before being collected and moved to the MC, (2) the primary storage location is the
MC for each aggregate, and (3) important data is archived for long-term storage at the archive
repository (see Figure 2).

Each MP captures data and temporarily stores it until it is transferred to the the MC. Conse-
quently, we assume that each MP has sufficient storage space to hold the data until it can be sent
to the MC. In some cases, the data may be processed or filtered before being sent to the MC. Data
stored on the MPs is not assumed to be on stable storage.

The primary data storage location is the MC in the aggregate where the data was captured.
Consequently, each MC must have enough storage space to hold all the data collected from the
slivers in the aggregate for the slice. In some cases, the data may be stored in its original (raw)
format (e.g., tcpdump [5] format). However, to make it readily viewable using a variety of existing
graphing programs, the preferred storage format is the round robin database (RRD) [13] format.
The RRD format also allows us to bound the space consumed by the captured data. Our current
implementation leverages the MRTG [7] software which interfaces with software like snmpwalk to
retrieve and store the data in RRD format so that it can be easily converted to charts and graphs
for viewing. In addition to basic file storage, the MC must provide a conventional SQL database
service that can be used to store data and references to data files that can be searched to select
only the data of interest to the user.

Finally, a shared global storage repository is used to store data for long-term use–use that
could extend beyond the lifetime of the experiment. The archival repository is designed with the
assumption that users will infrequently access data from the archival repository. Users that want
to visualize the data from their experiment will typically contact the MC to see their data, not the
archival repository. Data from the archival service will primarily be downloaded to the user’s ma-
chine for postmortem processing. Consequently, the interface to the archival service is expected
to be a simple file transfer service. Only data that will be needed beyond the lifetime of the exper-
iment, or data that cannot be lost, or data that is to be “published” for shared use, is expected to
be stored with the archival service. By default, no data is sent to the archival service. Users must
explicitly specify data to be sent to the archival service. We have not yet defined the method by
which data is saved to the archival service, nor has the interface to retrieve data from the repository
been defined. These are both areas of future research.

4.6 Data Processing

Data processing is occasionally needed in order to transform or summarize the captured data.
Examples include filtering the data to select items of interests (e.g., packets of a certain type
or packets belonging to a certain flow), computing averages, maximum, minimum, and total val-
ues, removing or eliding fields from the data, analyzing netflow data, etc. In the case of high-
performance packet capture devices, processing and/or filtering will likely occur on the device
itself (i.e., on the MP). Some processing may occur on other MPs as well. However, we assume

12

that most of the processing will occur on the MC because the MC holds (stores) all the data and
is the best suited to perform processing across data from multiple MPs.

4.7 Data Presentation

Data presentation occurs in two steps. First the data must be converted into graphs and charts
that will help the user visualize the data. The second step involves creating web pages to display
the graphs and charts in an intuitive way.

4.7.1 Creating Graphs and Tables

A variety of data visualization techniques are possible, and the INSTOOLS architecture is designed
to be agnostic about the way in which data is displayed. Instead, it provides mechanisms by which
users can write scripts to visualize their data. By default, the INSTOOLS software comes with a
set of scripts based on the rrdtools [13] to create graphs from the RRD data files. It also includes
custom software to create tables from the collected information (e.g., routing tables, ARP tables,
etc.). However, users are free to write their own scripts to process the data into a form that can be
displayed as part of a web page.

4.7.2 The Web Interface

A key objective of our web interface is to provide users with one-stop access to all the measure-
ment data associated with an experiment/slice. We want an interface that is easy to understood
and simple to use, not cluttered with a myriad of buttons selecting options that are incomprehen-
sible to everyone except experts. Common information such as packet counts should be readily
available for viewing, while more detailed information such as packet traces should be requested
on demand. To make the data easily accessible from any machine, we decided to make the data
available via web pages that can be accessed from any browser (without the need for special
pluggins or other browser features). Because users think about and view the topology as a set
of slivers connected by links, the web interface should display the data to users in a layout that
matches their conceptual view – i.e., a layout organized around slivers and links, clearly associat-
ing the data being displayed with the sliver or link it was derived from.

The job of the web interface system is to help users see the information of interest to them.
In particular, it should dynamically create web pages that display the graphs/charts selected by
the user for the slivers and links selected by the user. For example, selecting an MP from the list
of links and MPs should take the user to a web page that contains network state information and
traffic performance graphs for all the interfaces attached to the selected MP. Similarly, selecting a
link should bring the user to a page with traffic information specific to the link. Moreover, users
should be able to select which information they want to display for a sliver or link.

To reduce the load on the measurement system, the web interface system only generates a
web page’s contents on demand, both when it is first displayed and periodically thereafter for “live”
traffic graphs. In that way graphs are not generated until they are requested by the user.

13

4.8 Access Protection

Up to this point our discussion has been focused on the functionality needed to create and display
measurement information to the user. However, the system must also include security mecha-
nisms to protect the data, making it available only to authorized users. Moreover, because the
INSTOOLS system is performing many operations on behalf of the user–including software instal-
lation, data capture, data collection, and data processing–INSTOOLS requires the access rights
needed to perform these task in the user’s slice.

Because our user interface is designed around web pages, conventional web authorization
techniques and services can be used to protect access to the data. We have not yet selected
a web authorization mechanism but hope to leverage the web page authorization mechanisms
used in the Emulab web interface (or its ProtoGENI successor). Sharing data with other users will
require additional (group) authorization mechanisms that have not yet been defined.

The more pressing authorization issue is the problem of installing and controlling the the IN-
STOOLS software on the various slivers that make up the instrumentation and measurement in-
frastructure. In particular, the INSTOOLS software needs to run under a user account on the MC
with the ability to access data on the MPs. Our current implementation relies on an old Emulab
(ssh) key distribution mechanism to login or copy data from other machines, but this is not an ac-
cepted part of the GENI API and it is not clear how to do this if the Emulab features are no longer
accessible in a GENI environment. This is a point of continued debate.

5 Implementation Status

We implemented and deployed an initial version of the INSTOOLS system in the context of the
ProtoGENI [4] control framework. We modified the ProtoGENI control framework software to au-
tomatically add the MC to the RSPEC so that it will then be created by the ProtoGENI component
manager. In order to load the needed software on the MC and the MPs we created a new MC
kernel image and changed the ProtoGENI code to load our MC kernel onto the MC node and our
MP kernel onto the MPs.

Each MC includes an apache web server through which users are able to view the measure-
ment data for their slice. In addition to a web server, the MC contains MRTG software to retrieve
data from the MPs. The data is stored in RRD files on the MCs local hard disk using a naming con-
vention and metadata files that record information about the time, place, and type of information
collected.

Each MP is loaded with an SNMP daemon and custom MIBs to collect information about the
routing tables, packet counts, and some OS configuration information. The MC retrieves infor-
mation from the SNMP daemons on the MPs using snmpwalk (called from MRTG). Our current
implementation uses a shared community string to protect access to the SNMP daemon which is
less than ideal. An ssh daemon provides the MC with the ability to execute arbitrary Unix com-
mands to see OS configuration information, and to copy data files off of the MPs. We are in the
early stages of adding support for Netflow data, and expect to copy netflow data from the MPs to
the MC using secure copy.

14

5.1 Instrumentation List

Table 1 lists the instrumentation information currently available via our web interface.

Software Information Display Type

SNMPd Routing Table Table
IP Traffic Graph
ICMP Traffic Graph
TCP Traffic Graph
UDP Traffic Graph
CPU Utilization Graph
Memory Utilization Graph
Total Network Traffic Graph
Link-specific Traffic Graph
Link-specific Unicast Traffic Graph

ssh/arp ARP cache Table
ssh/netstat TCP streams Table
ssh/netstat UDP listeners Table
ssh/ps Process list Table
ssh/lsmod Installed Kernel Modules Table

Table 1: Measurement information collected and displayed

5.2 Web Interface

The current web interface is designed to be functional in order to demonstrate the ability to capture
data and display it via a single (web) interface. When a user’s experiment is created, the slice
creation scripts output the IP address/URL of the measurement system web pages. After the slice
has been configured and started, the measurement pages become available for viewing. A user
simply needs to type in the specified URL to view their measurement data.

The measurement web page includes a pull-down menu of the resources (slivers) that are
being monitored. Users select the sliver or link they want to see data for and then specify which
information they want to see for that sliver/link (see Figure 4).

Our current web pages only display information for one sliver or one link, but our next genera-
tion interface is expected to be based on a content management system where the user will have
much more control over the look and feel of the display. Users currently view multiple slivers and
links via multiple tabs or multiple instances of a web browser.

After selecting the information to be viewed, the web software (PHP scripts) generates the
selected tables and graphs. The graphs are currently updated and redrawn every five seconds to
give the appearance of a “live” view of the network. Example table output is shown in Figure 5,
and example graph output is shown in Figure 6.

15

Figure 4: Initial prototype interface to select measurement nodes and information for display.

Figure 5: Example table output for a sliver.

16

Figure 6: Example traffic graphs.

5.3 Security Considerations

Our current implementation utilizes the Emulab ssh-key distribution mechanisms to ensure that
only the MC sliver has access to the MPs. Security and authentication are an area of further
research and will ultimately depend to a large extent on the security mechanisms that end up
being supported by the underlying control framework. We are currently exploring a variety of
possible methods to secure access to the web interface.

References

[1] GENI glossary. http://groups.geni.net/geni/wiki/GeniGlossary.

[2] GENI Meta Operations Center. http://gmoc.grnoc.iu.edu/gmoc/index.html.

[3] Libpcap. http://www.tcpdump.org/.

[4] ProtoGENI. http://www.protogeni.net.

[5] TCPdump. http://www.tcpdump.org/.

[6] The Edulab Project. http://www.netlab.uky.edu/edulab.net.

[7] The Multi Router Traffic Grapher. http://oss.oetiker.ch/mrtg/.

[8] GENI SpiralOne, 2008. http://groups.geni.net/geni/wiki/SpiralOne.

17

[9] P. Barford, M. Blodgett, M. Crovella, and J. Sommers. Requirements and Specifica-
tions for the Instrumentation and Measurement Systems for GENI: Version 0.2, May 2009.
http://groups.geni.net/geni/attachment/wiki/MeasurementSystem/MeasurementSysSpec.pdf.

[10] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability Statements for
Internet Standard Management Framework. RFC 3410, Dec. 2002.

[11] Cisco. Introduction to Cisco IOS netflow - a technical overview, 2007.
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/
prod white paper0900aecd80406232.html.

[12] Paul Barford (ed). GENI Instrumentation and Measurement Systems (GIMS) Speci-
fication, 2006. GENI Design Document 06-12, Facility Architecture Working Group,
http://groups.geni.net/geni/attachment/wiki/OldGPGDesignDocuments/GDD-06-12.pdf.

[13] Tobias Oetiker. RRDtool. http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html.

[14] GENI Project Office. GENI: System Requirements Document, GENI-SE-SY-RQ-
02.0.pdf, July 2009. http://groups.geni.net/geni/attachment/wiki/SysReqDoc/GENI-SE-SY-
RQ-02.0.pdf.

[15] Robert Ricci and Ted Faber. GeniRspec. http://groups.geni.net/geni/attachment
/wiki/GeniRspec/rspec-draft-v0.5.doc.

[16] James N. Griffioen W. David Laverell, Zongming Fei. Isn’t It Time You Had An Emulab? In
Proceedings of the ACM SIGSCE 2008 Conference, March 2008.

18

RESTful Web Services vs. “Big” Web Services:
Making the Right Architectural Decision

Cesare Pautasso
Faculty of Informatics
University of Lugano

via Buffi 13
6900 Lugano, Switzerland

cesare.pautasso@unisi.ch

Olaf Zimmermann
IBM Zurich Research Lab

Saeumerstrasse 4
8803 Rueschlikon,

Switzerland
olz@zurich.ibm.com

Frank Leymann
Institute of Architecture of

Application Systems
University of Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany
frank.leymann@iaas.uni-

stuttgart.de

ABSTRACT
Recent technology trends in the Web Services (WS) domain in-
dicate that a solution eliminating the presumed complexity of the
WS-* standards may be in sight: advocates of REpresentational
State Transfer (REST) have come to believe that their ideas ex-
plaining why the World Wide Web works are just as applicable to
solve enterprise application integration problems and to simplify
the plumbing required to build service-oriented architectures. In
this paper we objectify the WS-* vs. REST debate by giving a
quantitative technical comparison based on architectural principles
and decisions. We show that the two approaches differ in the num-
ber of architectural decisions that must be made and in the number
of available alternatives. This discrepancy between freedom-from-
choice and freedom-of-choice explains the complexity difference
perceived. However, we also show that there are significant dif-
ferences in the consequences of certain decisions in terms of re-
sulting development and maintenance costs. Our comparison helps
technical decision makers to assess the two integration styles and
technologies more objectively and select the one that best fits their
needs: REST is well suited for basic, ad hoc integration scenarios,
WS-* is more flexible and addresses advanced quality of service
requirements commonly occurring in enterprise computing.

Categories and Subject Descriptors
A.1 [General Literature]: Introductory and Survey; C.2.2 [Com-
puter Communication Networks]: Network Protocols; D.2.11
[Software Engineering]: Software Architectures; D.2.12 [Soft-
ware Engineering]: Interoperability; H.1 [Information Systems]:
Models and Principles

General Terms
Design, Standardization

Keywords
Architectural Decision Modeling, HTTP, REST, Resource Oriented
Architecture, Service Oriented Architecture, SOAP, Technology
Comparison, Web Services, WSDL, WS-* vs. REST

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

Application Integration Styles

File
Transfer

Shared
Database

Message BusRemote
Procedure

Call

SOAP
WS*

REST

Figure 1: Putting the WS-* vs. REST decision in the context of
application integration styles

1. INTRODUCTION
Many different styles can be used to integrate enterprise applica-

tions (Figure 1). The choice between relying on a shared database,
using batched file transfer, calling remote procedures, or exchang-
ing asynchronous messages over a message bus is a major archi-
tectural decision, which influences the requirements for the un-
derlying middleware platform and the properties of the integrated
system [20]. The “Big”1 Web services technology stack [1, 45,
47] (SOAP, WSDL, WS-Addressing, WS-ReliableMessaging, WS-
Security, etc.) delivers interoperability for both the Remote Pro-
cedure Call (RPC) and messaging integration styles [41]. More
recently, an alternative solution has been brought forward to im-
plement remote procedure calls across the Web: so-called RESTful
Web services [12] are gaining increased attention not only because
of their usage in the Application Programming Interface (API) of
many Web 2.0 services [32], but also because of the presumed sim-
plicity of publishing and consuming a RESTful Web service [40].

Key architectural decisions in distributed system design, such as
the choice of integration style and technology, should be based on
technical arguments and a fair comparison of concrete capabilities
delivered by each alternative. Instead, the WS-* vs. REST debate
has unfortunately degenerated into biased and religious arguments
which create only confusion and expectations that cannot be ful-
filled [19].

1We follow the naming convention introduced in [33].

In this paper, we take a quantitative approach to compare the two
integration styles technologies based on architectural principles and
decisions. The comparison is based on our industry project and
teaching experience with both approaches. This way, the relative
complexity (or simplicity) of WS-* and RESTful Web services can
be measured in terms of 1) the number of decisions that have to be
made, 2) the number of alternatives (options) that are available, and
3) the relative cost as indicated by development effort required and
technical risk involved. As we will show, decisions may affect one
another so that, e.g., deciding to use a RESTful approach at a high
level will constrain the options for the choice of asynchronous mes-
saging middleware at a lower level. Also, in some cases, the lack
of options concerning some decisions (e.g., transactional guaran-
tees, or the reliability of the message exchange) in REST may only
apparently indicate a reduced complexity because the only choice
left is to implement a custom solution, which incurs higher devel-
opment and maintenance effort and risk.

This paper is organized as follows. First in Sections 2 and 3
we give background information on WS-* and RESTful Web ser-
vices. In Section 4, we introduce our decision-centric comparison
methodology. We then apply it by listing and comparing several
important principles (Section 5), conceptual (Section 6) and tech-
nology (Section 7) decisions involved in adopting WS-* and REST.
In Section 8, we present related work and in Section 9 we draw our
conclusions.

2. SOAP AND THE WS-* STACK
Providing seamless interoperability between heterogeneous mid-

dleware technology stacks and fostering the loose coupling of ser-
vice consumer (requestor, client) and service provider are the major
design goals of Service-Oriented Architecture (SOA) concepts and
Web services technologies.2

2.1 Concepts and Technology
On the conceptual level, a service is a software component pro-

vided through a network-accessible endpoint [16]. Service con-
sumer and provider use messages to exchange invocation request
and response information in the form of self-containing documents
that make very few assumptions about the technological capabil-
ities of the receiver. In particular, there is no notion of a remote
object reference that would require an object broker to manage a
distributed memory address space [43].

On the technology level, SOAP is an XML language defining a
message architecture and message formats, hence providing a rudi-
mentary processing protocol. The SOAP document defines a top-
level XML element called envelope, which contains a header
and a body. The SOAP header is an extensible container for mes-
sage-layer infrastructure information that can be used for routing
purposes (e.g., addressing) and Quality of Service (QoS) configu-
ration (e.g., transactions, security, reliability). The body contains
the payload of the message. XML Schema is used to describe the
structure of the SOAP message, so that SOAP engines at the two
endpoints can marshall and unmarshall the message content and
route it to the appropriate implementation.

2We distinguish between concepts and technologies as follows:
there are many ways to implement SOA. For example, Message-
Oriented Middleware (MOM) and, if programming language in-
dependence is not a requirement, message-driven Enterprise Java-
Beans can be viewed as SOA implementation technologies. In this
paper, however, we concentrate on XML-based Web services as
defined by W3C and OASIS [27] and restrict the discussion to the
scope of the WS-I Basic Profile 1.1 [47]. For more information we
refer the reader to [1, 45, 50].

Web Services Description Language (WSDL) is an XML lan-
guage for defining interfaces syntactically. A WSDL port type
contains multiple abstract operations, which are associated with
some incoming and outgoing messages. The WSDL binding
links the set of abstract operations with concrete transport proto-
cols and serialization formats. At the time of writing, the only
standardized binding uses SOAP over HTTP [21]. Vendors have
defined several additional ones to support messaging protocols as
well as proprietary legacy system interfaces. Service endpoints
are addressed either on the transport level, i.e., with Universal Re-
source Identifiers (URIs) for SOAP/HTTP-bound endpoints, or on
the messaging level via WS-Addressing [44].

By default, there is no notion of state. The interaction with state-
ful Web services is covered by the WS-Resource Framework [28],
which handles the management of stateful resources behind a Web
service interface. The WS-* technology stack covers also many
other QoS features required to ensure the interoperability of ad-
vanced middleware systems [45]. Given the modularity and com-
posability of the approach, this has led to a fairly large set of WS-*
specifications.

2.2 Strengths
In spite of their perceived complexity, the SOAP message format

and the WSDL interface definition language have gained widespread
adoption as the gateway technologies capable of delivering interop-
erability between heterogeneous middleware systems.

One advantage of WS-* is protocol transparency and indepen-
dence. Using SOAP, the same message in the same format can be
transported across a variety of middleware systems, which may rely
on HTTP, but also on many other transports. The transport proto-
col may change along the way. Being declared as SOAP headers,
QoS aspects such as encryption and reliable transfer can be made
independent from the transports used along the path ("end-to-end
QoS").

Using WSDL to describe a service interface helps to abstract
from the underlying communication protocol and serialization de-
tails as well as from the service implementation platform (operating
system and programming language). WSDL contracts provide a
machine-processable description of the syntax and structure of the
corresponding request and response messages and define a flexible
evolution path for the service. As business and technology require-
ments change, the same abstract service interface can be bound
to different transport protocols and messaging endpoints. In par-
ticular, WSDL can model service interfaces for systems based on
synchronous and asynchronous interaction patterns. This kind of
flexibility becomes fundamental when building gateways for pre-
existing legacy systems, which may not always use Web-friendly
protocols.

Furthermore, mature SOAP engines and WSDL tools [2, 11] ef-
fectively hide the perceived complexity from the application pro-
grammer and integrator. According to our personal project experi-
ence [54], it is not required to study the specifications to be able to
develop interoperable services, assuming that the selected runtimes
and tools adhere to the WS-I Basic Profile [47]. Test clients can be
generated from the WSDL contracts automatically.

2.3 Weaknesses
Paradoxically, the power delivered by current WS-* tooling that

make it so easy to turn existing software components into Web ser-
vices can also be misused [35]. Thus, it is important to avoid leak-
age across abstraction levels. Interoperability problems can occur
when, for instance, native data types and language constructs of the
service implementation are present in its interface. This weakness

can be mitigated by stating and enforcing certain design and coding
guidelines such as contract-first development.

Given the expressivity of the WS-* stack of standards, early
implementations have been plagued by interoperability problems.
Apart from misinterpretations later clarified by WS-I, these can
be partly blamed on the impedance mismatch between XML and
existing (object-oriented) programming languages. For instance,
the translation between the XML on the wire and the correspond-
ing memory data structures has been problematic and is the main
source of performance inefficiencies [15]. Taking Java as an ex-
ample, several attempts were necessary (Apache SOAP to JAX-
RPC 1.0 and 1.1 to JAX-WS and JAX-B) to produce a stable Web
service marshalling layer [25]. Furthermore, XML Schema is a
very rich language, making it difficult to identify the right con-
struct to express a data model in a way that is fully supported by
all SOAP/WSDL implementations. This problem can be avoided
with profiling, identifying a subset of XML Schema types such as
sequences which is “good enough” for most integration scenarios
and known to be interoperable.

3. REST
REpresentational State Transfer (REST) was originally introduc-

ed as an architectural style for building large-scale distributed hy-
permedia systems. This architectural style is a rather abstract entity,
whose principles have been used to explain the excellent scalability
of the HTTP 1.0 protocol and have also constrained the design of
its following version, HTTP 1.1. Thus, the term REST very often
is used in conjunction with HTTP.

In this section we outline the main characteristics of REST fo-
cusing on the current interpretation used to define “RESTful” Web
services. For more information we refer the reader to [12, 14, 33].

3.1 Technology Principles
The REST architectural style is based on four principles:
Resource identification through URI. A RESTful Web service

exposes a set of resources which identify the targets of the interac-
tion with its clients. Resources are identified by URIs [5], which
provide a global addressing space for resource and service discov-
ery.

Uniform interface. Resources are manipulated using a fixed set
of four create, read, update, delete operations: PUT, GET, POST,
and DELETE. PUT creates a new resource, which can be then de-
leted using DELETE. GET retrieves the current state of a resource
in some representation. POST transfers a new state onto a resource.

Self-descriptive messages. Resources are decoupled from their
representation so that their content can be accessed in a variety of
formats (e.g., HTML, XML, plain text, PDF, JPEG, etc.). Meta-
data about the resource is available and used, for example, to con-
trol caching, detect transmission errors, negotiate the appropriate
representation format, and perform authentication or access con-
trol.

Stateful interactions through hyperlinks. Every interaction with
a resource is stateless, i.e., request messages are self-contained.
Stateful interactions are based on the concept of explicit state trans-
fer. Several techniques exist to exchange state, e.g., URI rewriting,
cookies, and hidden form fields. State can be embedded in response
messages to point to valid future states of the interaction.

3.2 Strengths
RESTful Web services are perceived to be simple because REST

leverages existing well-known W3C/IETF standards (HTTP, XML,
URI, MIME) and the necessary infrastructure has already become
pervasive. HTTP clients and servers are available for all major

programming languages and operating system/hardware platforms,
and the default HTTP port 80 is commonly left open by default in
most firewall configurations.

Such lightweight infrastructure, where services can be built with
minimal tooling, is inexpensive to acquire and thus has a very low
barrier for adoption. The effort required to build a client to a REST-
ful service is very small as developers can begin testing such ser-
vices from an ordinary Web browser, without having to develop
custom client-side software. Deploying a RESTful Web service is
very similar to building a dynamic Web site.

Furthermore, thanks to URIs and hyperlinks, REST has shown
that it is possible to discover Web resources without an approach
based on compulsory registration to a (centralized) repository.

On the operational side, it is known how to scale a stateless
RESTful Web service to serve a very large number of clients, thanks
to the support for caching, clustering and load balancing built into
REST. Due to the possibility of choosing lightweight message for-
mats, e.g., the JavaScript Object Notation (JSON [10]) or, in the ex-
treme, even plain text for very simple data types, REST also gives
more leeway to optimize the performance of a Web service.

3.3 Weaknesses
There is some confusion regarding the commonly accepted best

practices for building RESTful Web services. Hi-REST recommen-
dations have been established informally, but are not always fully
followed by so-called Lo-REST implementations: Hi-REST, advo-
cates using all of the 4 verbs (GET, POST, PUT, DELETE)3; rec-
ommends the use of (so-called) “nice” URIs; and suggests the use
of Plain Old XML (POX) for formatting the content of messages4.
Lo-REST, on the other hand, focuses on the minimum common
denominator. Thus, only 2 verbs (GET for idempotent requests,
and POST for everything else) are used. This is due to the fact
that proxies and firewalls may not always allow HTTP connections
that use any other verb. Also, POST and GET are the only two
verbs that can be used in the method attribute of an XHTML
form5. These restrictions have led to a series of workarounds,
where the “real” verb is sent using either a special HTTP header
(X-HTTP-Method-Override) or – like with Ruby on Rails
– a hidden form field (−method). As with most non-standard
workarounds, these may not be understood by all Web servers,
and require additional development and testing effort. Regarding
the message payload format, Lo-REST simply enforces the use of
MIME-Types, but does not restrict the data to be in a particular
format.

Another limitation makes it impossible to strictly follow the GET
vs. POST rule. For idempotent requests having large amounts of
input data (more than 4 KB in most current implementations) it is
not possible to encode such data in the resource URI, as the server
will reject such “malformed” URIs6 – or in the worst case it will
crash, exposing the service to buffer overflow attacks. The size of
the request notwithstanding, it may also be challenging to encode
complex data structures into a URI as there is no commonly ac-
cepted marshalling mechanism. Inherently, the POST method does
not suffer from such limitations.

3The latest version of HTTP 1.1. actually includes 8 verbs: GET,
POST, PUT, DELETE, HEAD, TRACE, OPTIONS, CONNECT.
4At the time writing, it was debated which flavor of XML or which
alternative serialization formats (e.g., JSON, YAML, etc.) guaran-
tees the best interoperability.
5The XForms standard also allows PUT, but not yet DELETE.
6HTTP Code 414 - Request-URI too long.

4. COMPARISON METHOD
Architectural decisions [39] are the key metaphor in our com-

parison method. Architectural decisions capture the main design
issues and the rationale behind a chosen technical solution; they
can informally be defined as conscious design decisions concern-
ing a software system as a whole or affecting one or more of its core
components and determining the non-functional characteristics and
quality factors of the system [52]. For each architectural decision,
one or more architecture alternatives (AAs) enumerate the design
options.

In our earlier work, we proposed a structured, proactive approach
to architectural decision modeling [52], which extends today’s prac-
tices of rather informal, retrospective decision capturing for docu-
mentation purposes. When reviewing the SOAP vs. REST debate,
it becomes clear that many of the issues discussed and arguments
brought forward qualify as recurring architectural decisions that
can be modeled.

4.1 Preparation of Decision Models
Architectural decision models have several use cases, for exam-

ple decision support and governance during architecture design;
they can also be used to facilitate technical quality assurance re-
views [53]. In the context of this work, we used them as a metric
for the REST vs. WS-* technology comparison. We took the fol-
lowing steps:

1. Screening of reference information and positioning papers as
well as online resources such as blog entries of proponents
of the two integration styles, identifying candidate decisions
and alternatives along the way.

2. Development of several sample integration scenarios, record-
ing the architectural decisions and development steps required
when using REST and WS-*.

3. Creation of one decision model for each of the two integra-
tion styles from the results of Steps 1 and 2.

4. Comparison of the models created in Step 3, leading to a re-
view cycle to solicit additional input to make sure that both
models actually address the same design issues and are com-
plete enough for the following assessment step.

5. Walk through the now completed decision models to deter-
mine relative complexity and cost (as indicated by required
development effort and technical risk) assessments.

6. Measure and compare 1) number of decisions, 2) number of
options per decision and 3) cost assessment per option.

4.2 Comparison Levels
The two decision models we prepared are organized into four

levels of abstraction:

1. Comparison of architectural principles. The intent of an
architectural style such as REST is communicated through
its defining principles [3]. These principles determine how
the architectural style addresses its requirements and design
goals. In our comparison models, principles and require-
ments such as protocol layering, dealing with heterogeneity,
and loose coupling are investigated.

A comparison of these principles comprises the first step in
our comparison (Table 1). This is the level of abstraction
and detail on which most existing comparisons of the two
styles reside. Principles such as dealing with heterogeneity

and loose coupling are typically defined informally; hence,
an assessment solely based on these criteria only is bound
to be subjective and incomplete. Therefore, we added three
more steps.

2. Comparison of conceptual decisions. Next, we investigate
conceptual decisions required when following one of the two
respective styles (Table 2): we compare how service contract
design is supported and discuss the similarities and differ-
ences between the methodologies for publishing a service.

3. Comparison of technology decisions. We then refine the con-
ceptual decisions and compare how the two integration styles
can be technically realized (Table 3).

4. Vendor asset-level comparison. On this level, concrete im-
plementations tools can be evaluated in the light of the pre-
viously discussed decisions. For instance, we surveyed how
contemporary Web browsers and Web servers implement the
HTTP specification, and which SOAP engines and WSDL
tools exist. Due to space limitations, we could not include
these parts of the decision models in this paper.

5. COMPARISON OF PRINCIPLES
We start by comparing how REST and WS-* comply with the

architectural principles introduced in the previous section.

5.1 Protocol Layering
The first architectural principle clarifies whether the Web is used

as a publishing medium for delivering application services to clients
or as a messaging medium for application integration – in other
words, whether HTTP is considered as an application or as a trans-
port protocol.

In the context of REST, the Web is seen as the universal medium
for publishing globally accessible information. Applications be-
come part of the Web by using URIs to identify the provided re-
sources, data, and services and by leveraging the full semantics of
the four HTTP verbs (GET, POST, PUT, and DELETE) to expose
operations on such resources.

Instead, from the perspective of SOAP/WS-*, the Web is seen as
the universal transport medium for messages, which are exchanged
between Web services endpoints of published applications. Thus,
applications gain the ability to remotely interact through the Web
but remain “outside” of the Web. In other words, the HTTP pro-
tocol is used as a tunneling protocol to enable remote communica-
tion through firewalls, but it is not used to convey the semantics of
the service interaction. This can be seen from the way WS-* uses
URIs to address messaging endpoints, which typically remain the
same for all operations of a service, whereas REST URIs identify
resources of the application domain.

In WS-*, both request and response messages are exchanged us-
ing only one HTTP verb (POST), the only one which allows to
transfer XML payloads in both directions. This way, the selection
of the operation to be performed by the service is no longer done at
the HTTP level, but is pushed into the SOAP message7.

5.2 Dealing with Heterogeneity
The Web is a rather uniform client/server environment, where all

components (e.g., browsers, Web servers, proxies, clients) speak
the same protocol: HTTP. Heterogeneity is more related to the
competition between different browser vendors that would lead, for

7Unless the SOAP-Action HTTP header is employed, which is
controversial and discouraged by the WS-I Basic Profile.

Architectural Principle and Aspects REST WS-*

Protocol Layering yes yes
HTTP as application-level protocol �
HTTP as transport-level protocol �
Dealing with Heterogeneity yes yes
Browser Wars �
Enterprise Computing Middleware �
Loose Coupling, aspects covered yes, 2 yes, 3
Time/Availability �
Location (Dynamic Late Binding) (�) �
Service Evolution:

Uniform Interface �
XML Extensibility � �

Total Principles Supported 3 3

Table 1: Principles Comparison Summary

instance, to different renderings of HTML pages or incompatible
JavaScript libraries. Still, all browsers support the same HTTP pro-
tocol and can process a large variety of standard document types.

SOAP and WS-* originate from a more complex and heteroge-
neous domain, the one of enterprise computing. This domain can
be characterized as a collection of heterogeneous, autonomous, dis-
tributed software systems [7]. In organizations having a long his-
tory, which may even predate the advent of the Web, these software
systems are implemented in many different kinds of technologies.
Examples are legacy COBOL programs running on mainframes
that require screen-scraping, transaction processing over Message
Queuing (MQ)-based reliable data feeds, and distributed object-
oriented programs adhering to the Common Object Request Broker
Architecture (CORBA).

From these examples, it can be seen that the heterogeneity ad-
dressed by WS-* standardization efforts goes beyond the synchro-
nous client/server protocols used in specific RPC middleware prod-
ucts, but extends to delivering the interoperability needed to build
the plumbing for SOAs integrating technically diverse enterprise
applications.

5.3 Defining Loose Coupling
Both WS-* and REST foster the development of loosely coupled

distributed systems, albeit according to different definitions of this
rather overloaded term. There are many aspects to loose coupling:
time/availability, location transparency, and service evolution are
important dimensions.

A very important aspect of loose coupling concerns the abil-
ity for service consumers to interact with a service provider even
when the latter is not available (the time/availability aspect of loose
coupling). Thus, in such kind of loosely coupled system, clients
are not affected when services suffer from temporary downtime.
When WS-* is used to implement message-based (as opposed to
RPC-based) SOAs, the underlying message bus makes it possi-
ble to achieve such degree of loose coupling as messages can be
transferred using persistent, reliable queues. Since RESTful Web
services exclusively focus on RPC-like, synchronous interactions,
this technology cannot hide such failure scenarios. In other words,
when an HTTP server is down, its clients will be affected as their
HTTP requests fail; they have to handle such connection timeout
failures themselves.

Synchronous interactions can nevertheless show a form of loose
coupling, when clients discover the actual location of service pro-
viders at runtime. This location aspect of loose coupling (dynamic

late binding) is supported by most WS-* toolkits thanks to the stan-
dardization of service registry lookup APIs. In REST, a form of
location transparency can be achieved by DNS address translation,
requiring to additional efforts to properly configure the networking
infrastructure.

When it comes to managing the evolution of a Web service, loose
coupling implies the ability to make modifications to a Web service
without affecting its clients. In case of RESTful Web services, it
is clear that the uniform “4 verbs” GET, POST, PUT, DELETE are
the same for all services and never change. Freezing the basic pro-
tocol allows for complete decoupling of clients from servers, as no
change on the server will ever break a client, as such change sim-
ply does not happen. At first glance, RESTful Web services might
appear to be “more” loosely coupled, as each WS-* service inter-
face publishes a different set of operations and such interface may
change over time. However, independent of whether the set of op-
erations is fixed or not, another important part of a service interface
definition is the message parameter data model, which specifies the
format (i.e., the syntax, structure, and in some cases also the se-
mantics) of the message payloads for each operation. In this case,
both WS-* and RESTful POX/HTTP services share the same loose
coupling properties of XML [9]. As opposed to a binary protocol,
the usage of SOAP or POX messages can give the ability to slightly
modify a service interface in non-breaking ways [42].

In summary, as shown in Table 1, both styles support all three
principles, albeit with different definitions and interpretations of
the aspects involved. Therefore, it is too early to reach a conclusion
and we need to continue with our comparison at the conceptual and
technology levels.

6. CONCEPTUAL COMPARISON
Table 2 summarizes our conceptual comparison. From a con-

ceptual point of view, WS-* and REST support a different set of
integration styles as it was discussed in Section 1.

WS-* and REST take a different approach to the definition of the
Web service interfaces. In this section, we therefore concentrate
on the most important architectural decisions that have to be made
when following the respective contract design methodologies.

The importance of having a well-defined, machine processable
interface description has been understood for a long time [6, 24].
Two different practices have emerged in the WS-* community. Con-
tract-first prescribes to begin the development of a service from the
specification of its interface, whereas Contract-last takes a bottom-
up approach, where an existing service implementation is published
with an automatically generated contract.

REST constrains the interface of a resource to its generic uniform
interface with predefined operations. Thus, apparently no decision
has to be made concerning what are the available operations (i.e.,
contract-less development). Designers are advised to concentrate
their effort on defining the exposed resources. However, it is still
necessary to: 1) assess whether all four verbs are applicable to each
resource exposed by the RESTful Web service8 and 2) establish the
exact semantics of applying each verb on the resource.

Comparing the complexity of Web service interface design, we
can conclude that REST appears to be simpler as it completely
constrains the set of operations. However, the designer is still re-
quired to enumerate the set of resources (or the set of operations,
for WSDL-based services) to be provided by a Web service. These
are two different kinds of artifacts; however, a non-negligible de-
sign effort is still required in both cases.

8For which resource/verb combination should “405 Method Not
Allowed“ be returned to the client?

Architectural Decision and AAs REST WS-*

Integration Style 1 AA 2 AAs
Shared Database
File Transfer
Remote Procedure Call � �
Messaging �
Contract Design 1 AA 2 AAs
Contract-first �
Contract-last �
Contract-less �
Resource Identification 1 AA n/a
Do-it-yourself �
URI Design 2 AA n/a
“Nice” URI scheme �
No URI scheme �
Resource Interaction Semantics 2 AAs n/a
Lo-REST (POST, GET only) �
Hi-REST (4 verbs) �
Resource Relationships 1 AA n/a
Do-it-yourself �
Data Representation/Modeling 1 AA 1 AA
XML Schema (�)a �
Do-it-yourself �
Message Exchange Patterns 1 AA 2 AAs
Request-Response � �
One-Way �
Service Operations Enumeration n/a ≥3 AAs
By functional domain �
By non-functional properties and QoS �
By organizational criterion (versioning) �
Total Number of Decisions, AAs 8, 10 5, ≥10

aOptional

Table 2: Conceptual Comparison Summary

Although the methodology used to design a RESTful Web ser-
vice is rather similar to the one used to design a WSDL-based Web
service, it requires architects and developers to make decisions that
deal with different abstractions. To help with the comparison we
outline these decisions in the following. RESTful Web service de-
sign entails making these decisions (Table 2):

1. Resource Identification: What are the resource abstractions
(e.g., a book catalog, a purchase order, a bank account) ex-
posing an application as a Web service?

2. URI Design: Each resource should be addressed using a “nice”
URI scheme [34]. Properties of such URIs include: durabil-
ity [4], predictability, conciseness, reification (prefer nouns
to verbs), readability, consistency, and abstraction from im-
plementation details [26].

3. Resource Interaction Semantics: Decide which of the four
verbs are applicable to a resource. For example, should it be
allowed to POST on a resource representing a bank account?
In general, this decision can be constrained by distinguishing
whether accessing a resource is a read-only operation free
of side-effects – and thus GET should be used, or instead
accessing a resource involves modifying its state – thus one
of the PUT, POST, DELETE verbs should be used.

4. Resource Relationships: Resources should be connected by
linking them into several kinds of relationships (e.g., own-
ership, reference, or containment). This is useful to incre-
mentally discover the interface of a RESTful Web service by
traversing hyperlinks between each of its resource represen-
tations. Likewise, the content of a resource can be revealed
gradually, allowing interested clients to follow links to drill-
down for more details. Also, relationships may be used to
represent correct state transitions. Thus clients can correctly
interact with a stateful resource as they navigate to the next
states listed in the current state’s representation.

5. Data Representations: The content-type of a resource must
be chosen among a set of standard formats. If an XML-based
representation is chosen, it is not mandatory to constrain the
content using a schema.

The design process behind a WS-* Web service centers upon the
definition of its interface using the WSDL language, which requires
to make the following decisions (Table 2):

1. Data Modeling: Structure the content of the XML messages
exchanged by the service using XML Schema data types.

2. Message Exchange Patterns: Determine whether each oper-
ation uses a synchronous or an asynchronous interaction pat-
tern – an outgoing message is only required for synchronous
message exchange.

3. Service Operations Enumeration: Define the set of actions
exposed by the service interface. A WSDL port type can con-
tain more than one operation; the service modeler can group
related operations by functional area (business domain), by
nonfunctional properties such as security requirements (e.g.,
authorization profile), or by organizational factors such as
change frequency or version management patterns. The ra-
tionale behind these grouping criteria is to achieve high co-
hesion between the service operations so that as few clients
as possible break when the service interface evolves.

The design of the interface of WS-* Web services is a very im-
portant decision, as each service is characterized by a specific set of
operations, listed in its WSDL description. The port type for each
service must be designed carefully, so that it describes the service
functionality in an understandable way; no pre-defined semantics
for its operations is available. In this regard, many extensions for
annotating service descriptions with additional semantics metadata
have been proposed (e.g., SA-WSDL, or WSDL/S). However, no
standard has been agreed upon yet.

There is a tradeoff between modularity/reusability and perfor-
mance [8]. It is still a challenge to design a reusable Web service
interface, which requires a minimal number of interactions to ac-
complish a certain goal with all of its potential clients [37].

As summarized in Table 2, eight conceptual architectural deci-
sions with only ten alternatives are required for REST. For five de-
cisions, only one alternative exists. This freedom from choice leads
to substantial design and development efforts for decisions with a
single do-it-yourself alternative. Rather surprisingly, the number of
decisions is lower for WS-* (five). However, there are many more
alternatives for these decisions (more than ten). Hence, WS-* pro-
vides freedom-of-choice within rather strict conceptual boundaries
established by the specifications. Moreover, the alternatives are
easier to implement due to the standardization of the concepts and
the available tool support.

Architectural Decision and AAs REST WS-*

Transport Protocol 1 AA ≥7 AAs
HTTP � �a

waka [13] (�)b

TCP �
SMTP �
JMS �
MQ �
BEEP �
IIOP �
Payload Format ≥6 AAs 1 AA
XML (SOAP) � �
XML (POX) �
XML (RSS) �
JSON [10] �
YAML �
MIME �
Service Identification 1 AA 2 AA
URI � �
WS-Addressing �
Service Description 3 AAs 2 AAs
Textual Documentation �
XML Schema (�)c �
WSDL �d �
WADL [18] �
Reliability 1 AA 4 AAs
HTTPR [38]e (�) (�)
WS-Reliability �
WS-ReliableMessaging �
Native �
Do-it-yourself � �
Security 1 AA 2 AAs
HTTPS � �
WS-Security �
Transactions 1 AA 3 AAs
WS-AT, WS-BA �
WS-CAF �
Do-it-yourself � �
Service Composition 2 AAs 2 AAs
WS-BPEL �
Mashups �
Do-it-yourself � �
Service Discovery 1 AAs 2 AAs
UDDI �
Do-it-yourself � �
Implementation Technology many many
. . . � �
Total Number of Decisions, AAs 10, ≥17 10, ≥25

aLimited to only the verb POST
bStill under development
cOptional
dWSDL 2.0
eNot standard

Table 3: Technology Comparison Summary

7. TECHNOLOGY COMPARISON
Table 3 summarizes the third step of our REST vs. WS-* com-

parison. Unlike in the conceptual comparison, the number of deci-
sions required is the same (ten). However, again WS-* offers more
alternatives. For REST, five decisions offer only one alternative.

7.1 Transport Protocol
The Web is defined by its protocol: HTTP, thus when choosing

to build a RESTful Web service, there is no choice but to build
services that communicate using HTTP9. Thus, given the lack of
options, no decision is necessary when it comes to choosing the
communication protocol.

One of the properties of WS-*, instead, is its transport inde-
pendence, which allows SOAP messages to be exchanged using a
variety of transport protocols. The WSDL binding element is used
to select an appropriate transport protocol (HTTP being one pos-
sibility) to bind the operation messages. The corresponding QoS,
security, and transactional policies also have to be defined. Table 3
shows a few examples of available transport protocols. With this
approach, messages in a standardized format can be transported
using the most suitable protocol [46]. On the one hand, both syn-
chronous (e.g., HTTP) and asynchronous protocols (e.g., JMS) are
available, making SOAP suitable for the implementation of both
request-response and one-way message exchange patterns. On the
other hand, this creates the need for devising mechanisms such as
SOAP headers, delivering certain QoS properties at the message
level. For example, since a SOAP message could be routed both
over secure and non-secure communication channels, it has been
suggested that the message itself should be protected in order to
guarantee certain end-to-end security properties of the communi-
cation.

7.2 Payload Format
For WS-* Web services, a single standardized message format

exists: SOAP. On the other hand, RESTful Web services currently
do not use a single format for representing resources. Instead they
rely on the flexibility provided by the content negotiation features
of REST to choose between a variety of MIME document types –
which may also include SOAP itself10. This can complicate and
hinder the interoperability of a RESTful Web service, as – for ex-
ample – clients expecting JSON [10] data will not be able to parse
a XML payload. Also, a RESTful Web service capable of serving
resources in multiple representation formats requires more mainte-
nance effort. However, in our experience the benefit of preferring
JSON over XML can outweigh the extra effort and the lack of in-
teroperability with a significant overhead reduction.

7.3 Service Identification
RESTful Web services leverage the URI standard as the nam-

ing mechanism to address resources. The advantage of URIs is
that they encapsulate all information required to identify and lo-
cate a resource on a global addressing space without the need for
a centralized registry. Furthermore, URIs can be bookmarked, ex-
changed via hyperlinks and, given their readability, even printed on
billboards for advertising [26].

WS-* initially lacked a standard addressing mechanism and also
relied on URIs for identification of messaging end-points and WSDL
service interface descriptions. More recently, WS-Addressing [44]
was introduced to represent addressing information through the
definition of “end-point references”. This standard language aug-

9The waka [13] protocol being still under development
10IETF RFC 3902, application/soap+xml.

ments the information stored in URIs with additional metadata, but
lacks the conciseness and readability properties that ensured the
success of URIs.

7.4 Service Description
Whereas WS-* Web services rely on a standard, machine-process-

able, strongly-typed XML interface description language (WSDL),
RESTful Web services have adoped a more human-oriented ap-
proach based on informal, textual descriptions, giving developers
extensive documentation of the API of the provided service [32].

As a consequence, WSDL tools can automatically generate client
stub code for most programming languages, masking the complex-
ity of remotely interacting with a service. For RESTful Web ser-
vices, developers have to manually write the code to assemble the
resource URIs and correctly encode/decode the exchanged resource
representations. Having good documentation greatly helps to re-
duce the amount of trial and error involved in the process, but is
no substitute for using a compiler of a “real” interface description
language. To address this shortcoming, the Web Application De-
scription Language (WADL [18]) was recently proposed. Also the
latest WSDL version 2.0 could be applied to describe RESTful Web
services, thanks to its more fine-grained control over the HTTP
binding and the possibility of supporting non-SOAP message en-
codings.

In general, having an interface description language to specify
service contracts is not only beneficial for simplifying repetitive
development tasks, but also helps to catch incompatibilities caused
by changes of service interfaces early in the development process.
Thanks to the strong typing features of WSDL, clients will break at
compile time. This would also benefit RESTful Web services, in-
sofar changes to the URI naming scheme11 and resource represen-
tations are concerned, since due to the uniform interface principle
the actual set of operations applicable to a resource never changes
(as already discussed).

7.5 Reliability, Security, Transactions
The WS-* stack contains a set of optional specifications covering

the QoS properties of messages exchanged. These help to guaran-
tee a certain quality level in the communication, in a way which is
independent of the underlying transport protocol and which can be
handled automatically by the WS-* middleware. In terms of the ef-
fort involved, developers may declare the desired security/reliable
messaging/transactional policies associated with a Web service in-
terface and reuse the corresponding WS-* standard implementation
to deliver them. While the WS-* specifications related to QoS in-
deed are complex, they should be considered as optional technol-
ogy choices addressing advanced requirements in enterprise com-
puting scenarios.

For simpler scenarios, the basic guarantees of protocols such
as HTTP (best effort) and HTTPS (point-to-point SSL security)
are shared by both REST and WS-* styles. A reliable extension
to HTTP (HTTPR [38]) was proposed, but did not complete the
standardization process. No framework for distributed transactions
comparable to WS-* has been proposed in conjunction with REST.

7.6 Service Composition
Fostering service reuse by means of service composition is one

of the central tenets of SOA. The standardization of the invoca-
tion path to a Web service has greatly facilitated their reuse and
composition, as opposed to the traditionally fragmented markets
for software components (e.g., where EJBs can not be easily mixed
with .NET assemblies). This has also led to the emergence of a

11HTTP redirection can only work up to a certain point.

large number of languages and tools specifically targeting the com-
position of WS-* services out of already existing ones (e.g., WS-
BPEL [29], JOpera [31], or XL [15]).

Given their lack of formally described interfaces and the pos-
sibility of not always using XML messages, RESTful Web ser-
vices are cumbersome to compose using the WSDL-based invo-
cation abstractions provided by WS-BPEL [30]. The composition
of RESTful Web services is the main focus of so-called Web 2.0
Mashups, which are seen as a welcome improvement over screen-
scraping the information to be composed out of traditional HTML
Web sites [48].

7.7 Service Discovery
Do-it-yourself build-time lookup is a common choice for both

RESTful and for WS-* Web services. Many successful large-scale
industry deployments of Web services use groupware or Web por-
tals supported by databases as their service repositories [54].

WS-* offers Universal Description, Discovery, and Integration
(UDDI) registries as an additional technology option. While this
technology has been mature and stable for several years now, it
has failed to reach widespread acceptance in the industry. Several
proprietary WSDL-based registry and repository products exist.

7.8 Implementation Technology
A fairly large number of application server platform options ex-

ists both for hosting RESTful and WS-* Web services implemented
in any programming language. Likewise, client-side library sup-
port for consuming RESTful and WS-* Web services is also avail-
able in most programming languages and operating systems. Due
to space limitations we cannot present a complete survey compar-
ing all available implementation technologies. However, it is worth
mentioning that most existing WS-* Web services tools are cur-
rently being extended to also provide support for REST.

8. RELATED WORK
SOAP vs. REST has been an ongoing discussion for some time

on the blogosphere and has also recently gained attention in the aca-
demic community. None of the existing work employs a structured
and detailed comparison method based on architectural decisions.

For example, the ECOWS 2005 keynote [17] focused on the rec-
onciliation of WS-* with REST, whereas [55] gives a comparison
of the two approaches from the point of view of their application
to workflow systems. A good discussion on whether the Web (and
in particular RESTful Web services) can fulfill the requirements of
enterprise computing can be found in a recent W3C workshop [23].

A comparison of RESTful Web services and so-called “Big Web
Services” is also found in Chapter 10 of [33]. In it, a critical look
to the WS-* stack is given in terms of how it does not fit with
the “resource-oriented” paradigm of the Web. The chapter also at-
tempts to show how simpler RESTful techniques can be used to
replace the corresponding WS-* technologies. The distinction be-
tween “resource-oriented” and “service-oriented” architectures was
first introduced by [36]. Unfortunately, the book does not provide
a clear definition of the terms services and resources, and its tech-
nology comparison is not based on measurable, objective criteria
such as software quality attributes, design and development effort,
technical risk, and QoS characteristics.

Even if HTTP is a synchronous protocol, the comparison pre-
sented in [22] argues that RESTful calls are asynchronous from an
application layer perspective. Thus, REST can be seen as favorable
solution for simple integration scenarios. Additional architectural
concerns such as the URL design and payload format are not dis-
cussed.

In [51] we applied architectural decision modeling concepts to
another complex design issue in SOA, that of designing transac-
tional workflows. We touched upon the transport protocol selec-
tion decision, but did not investigate it in detail. The paper focused
on the rationale behind architectural decision modeling and the us-
age of decision models as a design method; it did not serve as a
technology comparison metric as in this paper.

A framework for the comparison of pre-Web services middle-
ware infrastructures (i.e., CORBA vs. J2EE vs. COM+) has been
introduced in [49], with the goal of supporting the choice of the
most suitable framework given certain application requirements.

9. CONCLUSION
In this paper we used architectural principles and decisions as

a comparison method to illustrate the conceptual and technologi-
cal differences between RESTful Web services and WSDL/SOAP-
based “Big” Web services. On the principle level, the two ap-
proaches have similar quantitative characteristics. On the concep-
tual level, less architectural decisions must be made when deciding
for WS-* Web services, but more alternatives are available. On
the technology level, the same number of decisions must be made,
but less alternatives have to be considered when building RESTful
Web services. Thus, the perceived simplicity of REST now can
be understood from a quantitative perspective – choosing REST
removes the need for making a series of further architectural de-
cisions related to the various layers of the WS-* stack and makes
such complexity appear as superfluous. Still, if advanced function-
ality as delivered by WS-* is needed, it will be no simple matter
to extend a RESTful Web service to support it in an interoperable
manner. Furthermore, according to our experience several of the
decisions that are very easy to make for RESTful services lead to
significant development efforts and technical risk, for example the
design of the exact specification of the resources and their URI ad-
dressing scheme.

From our comparison it can also be seen that the two styles
are rather similar, as long as the same subset of technology deci-
sions is compared, for example when ignoring the more advanced
features of the WS-* stack and only comparing POX/HTTP and
SOAP/HTTP. It could even be argued that these two approaches
are two technology-level variants of the same conceptual design.

Assuming that the enterprise-level features of WS-* (transac-
tions, reliability, message-level security) are not required, the key
decision drivers at present are degree of flexibility and control,
but also development efforts and technical risk (in implementa-
tion design, development, and maintenance), degree of open source
and vendor tool support, and programming interface convenience.
REST scores better with respect to flexibility and control, but re-
quires a lot of low-level coding; WS-* provides better tool support
and programming interface convenience, but introduces a depen-
dency on vendors and open source projects. The main conclusion
from this comparison is to use RESTful services for tactical, ad hoc
integration over the Web (à la Mashup) and to prefer WS-* Web
services in professional enterprise application integration scenar-
ios with a longer lifespan and advanced QoS requirements.

Acknowledgements
The authors would like to thank Domenico Bianculli, Christopher
Ferris, Joachim Hagger, Jana Koehler, Noah Mendelsohn, David
Nüscheler, James Snell, Stefan Tramm, and Tammo van Lessen for
their invaluable input and support. This work is partially supported
by the EU-IST-FP7-215605 (RESERVOIR) project.

10. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web

Services: Concepts, Architectures, Applications. Springer,
2004.

[2] Apache. Axis2. http://ws.apache.org/axis2/.
[3] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice. Addison Wesley, 2003.
[4] T. Berners-Lee. Cool URIs don’t change, 1998. http:

//www.w3.org/Provider/Style/URI.html.
[5] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform

Resource Identifier (URI): generic syntax. IETF RFC 3986,
January 2005.

[6] A. Birrell and B. J. Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems (TOCS),
2:39–59, February 1984.

[7] C. Bussler. B2B Integration. Springer, June 2003.
[8] W. R. Cook and J. Barfield. Web services versus distributed

objects: A case study of performance and interface design. In
Proc. of the IEEE International Conference on Web Services
(ICWS2006), Chicago, USA, September 2006.

[9] F. P. Coyle. XML, Web Services, and the Data Revolution.
Addison-Wesley, May 2002.

[10] D. Crockford. JSON: The fat-free alternative to XML. In
Proc. of XML 2006, Boston, USA, December 2006.
http://www.json.org/fatfree.html.

[11] Eclipse. Web Tools Platform (WTP) Project.
http://www.eclipse.org/webtools/.

[12] R. Fielding. Architectural Styles and The Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[13] R. Fielding. waka: A replacement for HTTP. In
APACHECON US, November 2002.
http://www.apache.org/~fielding/waka/.

[14] R. Fielding. A little REST and Relaxation. The International
Conference on Java Technology (JAZOON07), Zurich,
Switzerland, June 2007.
http://www.parleys.com/display/PARLEYS/
A\%20little\%20REST\%20and\%20Relaxation.

[15] D. Florescu, A. Gruenhagen, and D. Kossmann. XL: An
XML programming language for Web service specification
and composition. In Proc. of the 11th International World
Wide Web Conference (WWW2002), Honululu, Hawaii,
USA, May 2002.

[16] K. Gottschalk, S. Graham, H. Kreger, and J. Snell.
Introduction to web services architecture. IBM Systems
Journal, 41(2):170–177, 2002.

[17] H. Haas. Reconciling Web services and REST services
(Keynote Address). In Proc. of the 3rd IEEE European
Conference on Web Services (ECOWS 2005), Växjö,
Sweden, November 2005.

[18] M. J. Hadley. Web Application Description Language
(WADL), 2006. http://wadl.dev.java.net/.

[19] D. Hansson. Keynote. In Canada on Rails, January 2006.
[20] G. Hohpe. Enterprise Integration Patterns. Addison-Wesley,

October 2003.
[21] IETF. HTTP, 1999.

http://www.ietf.org/rfc/rfc2616.
[22] E. Landre and H. Wesenberg. Rest versus soap: as

architectural style for web services. In 5th International
OOPSLA Workshop on SOA & Web services Best Practices,
2007.

[23] K. Laskey, P. L. Hègaret, and E. Newcomer, editors.
Workshop on Web of Services for Enterprise Computing.
W3C, February 2007. http:
//www.w3.org/2007/01/wos-ec-program.html.

[24] B. Meyer. Applying "design by contract". IEEE Computer,
25(10):40–51, October 1992.

[25] R. Monson-Haefel. J2EE Web Services. A-W., 2003.
[26] J. Nielsen. URI as UI, March 1999. http:

//www.useit.com/alertbox/990321.html.
[27] OASIS. Organization for the Advancement of Structured

Information Standards.
http://www.oasis-open.org/.

[28] OASIS. Web Services Resources Framework (WSRF 1.2),
April 2006. http:
//www.oasis-open.org/committees/wsrf/.

[29] OASIS. Web Services Business Process Execution Language,
April 2007. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.pdf.

[30] H. Overdick. Towards resource-oriented bpel. In 2nd
ECOWS Workshop on Emerging Web Services Technology,
November 2007.

[31] C. Pautasso and G. Alonso. The JOpera visual composition
language. Journal of Visual Languages and Computing
(JVLC), 16(1-2):119–152, 2005.

[32] Programmable Web. API Dashboard, 2007.
http://www.programmableweb.com/apis.

[33] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly,
May 2007.

[34] P. Seebach. Making URLs accessible, June 2001.
http://www.ibm.com/developerworks/
library/us-cranky8.html.

[35] R. Sessions. Fuzzy boundaries: Objects, components, and
web services. ACM Queue, 2(9), December/January
2004-2005.

[36] J. Snell. Resource-oriented vs. activity-oriented Web
services. IBM developerWorks, October 2004.
http://www-128.ibm.com/developerworks/
webservices/library/ws-restvsoap/.

[37] T. Takase and K. Tajima. Efficient Web services message
exchange by SOAP bundling framework. In Proc. of 11th
IEEE International EDOC Conference (EDOC 2007),
October 2007.

[38] S. Todd, F. Parr, and M. Conner. A Primer for HTTPR, July
2001. http://www.ibm.com/developerworks/
webservices/library/ws-phtt/.

[39] J. Tyree and A. Akerman. Architecture decisions:
Demystifying architecture. IEEE Software, 22(2):19–27,
2005.

[40] S. Vinoski. Serendipitous reuse. IEEE Internet Computing,
12(1):84–87, 2008.

[41] S. Vinoski. Putting the "Web" into Web services: Interaction
models, part 1: Current practice. IEEE Internet Computing,
6(3):89–91, May-June 2002.

[42] S. Vinoski. Putting the "Web" into Web services: Interaction
models, part 2. IEEE Internet Computing, 6(4):90–92, July
2002.

[43] W. Vogels. Web services are not distributed objects. IEEE
Internet Computing, 7(6):59–66, Nov-Dec 2003.

[44] W3C. Web Services Addressing, May 2006.
http://www.w3.org/2002/ws/addr/.

[45] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. Ferguson. Web Services Platform Architecture. Prentice
Hall, March 2005.

[46] C. Werner, C. Buschmann, T. Jaecker, and S. Fischer.
Enhanced transport bindings for efficient SOAP messaging.
In Proc. of the 3rd IEEE International Conference on Web
Services (ICWS’05), Orlando, FL, USA, July 2005.

[47] WS-I. Web Services Interoperability.
http://www.ws-i.org.

[48] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and
M. Matera. A Framework for Rapid Integration of
Presentation Components. In Proc. of the 16th International
World Wide Web Conference. Banff, Canada, May 2007.

[49] A. Zarras. A comparison for middleware infrastructures.
Journal of Object Technology, 3(5):103–123, May-June
2004.

[50] O. Zimmerman, M. Tomlinson, and S. Peuser. Perspectives
on Web Services: Applying SOAP, WSDL, and UDDI to
Real-World Projects. Springer, September 2003.

[51] O. Zimmermann, J. Grundler, S. Tai, and F. Leymann.
Architectural decisions and patterns for transactional
worlflows in SOA. In Proc. of the 5th International
Conference on Service-Oriented Computing, Vienna,
Austria, 2007.

[52] O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann, and
N. Schuster. Reusable architectural decision models for
enterprise application development. In Quality of Software
Architecture (QoSA) 2007, Boston, USA, July 2007.

[53] O. Zimmermann, J. Koehler, and F. Leymann. Architectural
decision models as micro-methodology for service-oriented
analysis and design. In SEMSOA Workshop, Hannover,
Germany, May 2007.

[54] O. Zimmermann, M. Milinski, M. Craes, and F. Oellermann.
Second generation web services-oriented architecture in
production in the finance industry. In OOPSLA Conference
Companion, 2004.

[55] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson.
Developing Web services choreography standards - the case
of REST vs. SOAP. Decision Support Systems, 40(1):9–29,
July 2005.

ORBIT Measurements Framework and Library (OML): Motivations, Design,
Implementation, and Features

Manpreet Singh, Maximilian Ott, Ivan Seskar, Pandurang Kamat
WINLAB, Rutgers University, 73 Brett Road, Piscataway, NJ 08854

{singh, max, Seskar, pkamat}@winlab.rutgers.edu

Abstract

In this paper we present ORBIT measurement

framework and library (OML), which is a distributed
software framework enabling real-time collection of
data in a large distributed environment. The success of
a multi-user distributed testbed facility depends largely
on the ease of use, remote access as well as on the ease
of collecting useful measurements from experimental
runs. OML provides a flexible and dynamic way in
which data is collected and made available for real-
time access to the experimenters. Application
programmers can use simple interfaces provided to
transfer measurements and other performance data to
a central repository. This paper focuses on the
motivation, requirements, design, implementation and
real world usage of OML that is designed to provide a
scalable, controllable and easy to use mechanism for
experimenters to collect useful results from the
experiments conducted on the ORBIT testbed [1].

1. Introduction

One of key challenges faced by an experimenter
using a distributed large-scale testbed is how to collect
experiment data efficiently. Traditionally, the
measurement data are locally written into log files and
are collected at the end of the experiment. A large
collection of nodes and huge amount of measurement
data generated during the experiment pertaining to
node, network and application performance, results in a
number of logging files in various formats.
Additionally many of the experiment parameters, such
as input parameters, may not be captured at all.
Another problem with logging files is that they require
some form of data serialization to a text file and back
for analysis making analysis across multiple
applications difficult. Also, the current data collection
mechanisms create excessive overhead, especially in
the maintenance of experiment results for future use.

 It is important to have a scalable, easy to use,
distributed and controllable framework to collect and
organize experiment data, and analyze the results in
real-time. A significant advantage of real-time data
collection is that it allows for interactive experiments in
which users can react to the dynamics of the
experiment immediately, saving valuable resources. It
can reduce the burden of measurement collection on
the experimenters so that they can focus on protocol
and application development without worrying about
the complexity and details to collect, transport and
store the experiment data.

We propose OML, which is a measurement data
collection and organization framework that addresses
the above challenges. It enables the experimenter to
define the measurement points and parameters, collect
and pre-process measurements, and organize the
collected data into a single database with the
experiment’s context, avoiding logging files in various
formats. The OML framework is based on a
client/server architecture and uses IP multicast for the
client to report the collected data to the server in real-
time. It defines the data structures and functions for
sending/receiving, encoding/decoding and storing
experiment data. With user-friendly and generic APIs,
it can be easily integrated into user applications. Users
can define what measurements are to be collected and
stored. The clients at the experiment nodes collect
measurements and send them to the collection server
over a multicast channel after encoding them into XDR
[2] format. OML supports multiple multicast channels
and instances of the collection server per experiment to
enhance the network scalability and provide reliability
of data collection by load balancing and redundancy.
An SQL database is used for persistent storage of
experiment data that also allows access using standard
data analysis tools like Matlab [6]. Note that although
OML is written initially with a focus on the ORBIT
testbed [1], it can be used in various wired and wireless

networking testbeds and distributed systems for data
collection.

The rest of this paper is organized as follows.
Section 2 discusses the requirements for data collection
posed by distributed large-scale network testbeds and
the key challenges in building such a collection
framework. In Section 3, the OML architecture and
implementation details are described with reference to
the requirements and features. It also discusses the
APIs provided to interface with application code and
the methods to control the collection behavior. Section
4 presents the performance of our implementation as
well as the experience gained through OML usage on
the ORBIT testbed [1]. Finally Section 5 concludes the
paper.

2. Requirements posed by a distributed
framework.

The initial goal of OML is to provide a mechanism
for large-scale testbed users the ability to transfer their
measurements into a database on a remote machine.
Traditionally, if the application is running on a number
of nodes, after the experiment concludes, users have to
log-in into all the machines and manually copy the
measurement files and system logs to a remote machine
for further analysis. This is a time consuming and
repetitive process, which delays the execution of the
next set of experiments waiting for the resources to
become available. It may also result in missing files.

Further, if the experimenter wishes to change the
collection behavior, he/she needs to recompile and re-
deploy the application, which itself is an error-prone
and time consuming process. Hence a framework,
which simplifies the data collection process, scales with
the size of the distributed system and allows dynamic
control over the measurement collection process, is
required in such a distributed networking environment.

The motivation behind OML is to hide the
complexity of data collection from the experimenters
so that they can focus on application development and
logic. Principle requirements of a data collection
framework in a distributed environment include
• User friendly:
Provide simple and user friendly APIs for the
application developer to collect and transport the
experiment data. This includes handling any threading
issues related to data collection, data-type safety and
minimal configuration and instantiation complexity on
the part of the application developer.
• Controllability and Management
It is time-consuming and complex to re-write,
recompile and re-deploy the application each time one

wants to change the collection behavior. There should
be a simple way to control and change this behavior in
real-time.
• Accountability
Framework should provide a way to correlate
application measurements and related data, in time (e.g.
timestamp) and context (e.g. sequence numbers, name
of the machine running the application and other
hardware/software characteristics).
• Collocation of information
Traditionally, in a large distributed environment, all the
information related to the experiment is not available at
a central point, making it difficult to correlate events in
an experiment with its configuration options and other
variable parameters associated with the execution
environment. The collection framework should provide
a central point where experimenters can look for data
related to the distributed environment in which
experiments are run.
• Scalability
The framework should not introduce network traffic
large enough to have a detrimental effect on the regular
application/control performance. It should make sure
that the processing load caused by the collection
framework on the machines running the application is
minimal.
• Flexible and Generic Solution
The collection framework should be generic enough
that it can be used to collect not only application
measurement’s data; but also any other data like system
and network statistics, application parameter and debug
logging etc.

3. OML Architecture and Implementation.

OML aims at reducing the burden of measurements
collection on application developers. It defines the
framework, data structures and functions for
transporting and storing experiment data. Data filters
form another sub-component of this library that allows
testbed users to compress/reduce the measurements by
applying various averaging, linear and non-linear
algorithms. From an operational perspective OML is
based on a client server paradigm, where clients are the
nodes running application code that dispatch the
measurements; and the server is a machine that
receives, decodes and stores this data in the SQL
database.
 Figure 1 shows the high level architecture of OML,
with client side and server side components
communicating through IP multicast. If the
environment consists of a large number of nodes
generating massive amounts of measurement traffic,

multiple multicast channels can be used in conjunction
with virtual lans (vlans) to distribute the network load.
Multiple collection servers may subscribe to the same
multicast address to provide runtime redundancy to the
collection mechanism. Thus using multicast in OML
serves to improve both scalability and reliability of the
collection framework.

XDR Encoded data over multicast channel .

Collection server

SQL DB

OML transport layer

OML XDR decoder

OML SQL module

User application

OML interface to user application

OML transport layer

OML data filter , id = xx

OML data filter , id = yy

p
lu

g
g
a
b
le

 f
ilt

e
rs

Experiment node

Berkeley Queues

Figure 1. OML component architecture

3.1. Client side components

3.1.1. API interface. This interface provides user
applications with the ability to transport collection data
through the OML framework. It also provides a type
safe way of transferring data over the network and
handling the threading issues if any.

3.1.2 OML data filters. These are pluggable
components that provide a standard way of reducing
the amount of collectable data to be stored for further
analysis. More the amount of data we capture, the more
we have to transport and store; hence exhausting the
disk and network resources. On the other hand, filtering
too aggressively might "throw away" details which turn
out to be crucial in understanding certain phenomena,
resulting in re-run of the experiment with different
filter settings.

 Filters can be configured and used without re-
writing the application code and hence provide a
flexible and efficient way to change the data collection
behavior. OML supports time triggered filtering, where
filters are fired after certain amount of time; and
sample triggered filtering in which case filters are fired
based on the number of data values collected.
3.1.3 OML XDR Encoding and transport layer. This
module is responsible for encoding the filtered

measurements data into XDR format and sending it to
the OML server over a multicast channel. Each
encoded packet corresponds to a measurement point
and contains its name thus helping the server to identify
the measurement point the packet belongs to. This
module provides a memory and network efficient way
of transferring experiment data.

3.2. Server side components.

3.2.1. Berkeley database queue (bdb queue).
SleepyCat’s Berkeley database [3], which is an
embedded database that supports key based fast access
persistent queues, is used to store the received packets.
The logic behind such a design is the fact that XDR
decoding and SQL insert process is much slower than
the data receiving process. Using a queue significantly
improves the scalability of OML by providing a buffer
to avoid packet loss when dealing with experiments
that generate bursty data. Since bdb queues are used as
a pluggable component, OML transport layer can feed
into multiple bdb queues to accommodate data load
dynamically.

3.2.2. XDR Decoder. Decoder reads out of the bdb
queue and decodes the XDR packet according to the
server configuration file. Both, the client and the server
configuration files are generated from the same
application and experiment definition files; this ensures
that decoding is done in a type safe manner.

3.2.3. SQL Module. This module is responsible for
storing the decoded values in the SQL server for post
experiment analysis and data persistency. Since each
OML packet contains the name of the measurement
point, which in turn is mapped to a unique database
table; it is used to identify the correct table where the
measurement values are to be stored. OML currently
uses MySQL server [4], but any SQL compliant
database is supported. Popular data analysis tools like
Matlab and Microsoft Excel can directly import data
from an SQL database, hence significantly enhancing
the usability of OML.

3.3. OML configuration and setup

3.3.1 Code generation for OML client API. Client
API provides clean interfaces for the application
developers making it easy for the users to integrate
measurement collection capabilities into their
applications. Application developers also don’t have to
worry about the threading issues as they are handled by
the OML.

An application developer can define the
measurement points and parameters for his/her
application through a web interface. As shown in
Figure 2, the definition is saved into an XML-based
configuration file. Based on the definition, the source
code for the measurement client is automatically
generated by an XSLT based code generator. At the
client side, this automatically generated code contains
application specific methods that handle type safe data
collection, which can be compiled and linked with the
application.

<measurement-points>
 <measurement-point id="group1">
 <metric id="rssi" type=“float"/>
 <metric id=“noise" type=“float"/>
 </measurement-point>
 <measurement-point id="group2“>
 <metric id=“lost_packets" type="float"/>
 </measurement-point>
<measurement-points>

int oml_group1 (float rssi,
 float noise

) {…}

int oml_group2 (float lost_packets
) {…}

Code Generation

Compile Application
code against Client APIs

OML Ready Application

Figure 2. Generating client APIs

Figure 2 shows application definition containing
radio parameters (rssi, noise and throughput) that a user
wants to collect. The XML definition file shows two
measurement points, “group1” & “ group2” defined by
the application programmer. Based on the definition,
the source code is automatically generated with the API
functions oml_group1 (...) and oml_group2 (...).

The application then calls the measurement point
APIs to transport the measurements data to the
collection server. OML handles the threading issues
involved with the data filtering, encoding and
transmission. Following the example of application
definition shown in Figure 2, the OML API calls from
the application are shown in Figure 3.

if(r_data->send_option == 1) {
buffer->rssi = recv_packet_params.rssi ;
buffer->noise = recv_packet_params.noise;

oml_group1(buffer->rssi, buffer->noise);
} else {
 syslog(LOG_ERR, "Unknown receive option!!! \n");
}

lost_packets = (int) (pck_id.seqnum - old - 1);
oml_group2(lost_packets);

Figure 3. Calling OML API from application

code

3.3.2 OML data filter configuration. Filter
configuration is done as a part of experiment definition.
As shown by a snippet of sample experiment definition
in figure 4, a filter “example_filter” is chosen to be
applied on measured rssi values, and fired using a
“time trigger”. The experiment definition file also
defines a trigger property for the measurement point.
The value element of this property determines when all
the filters included in the measurement point get
triggered. The refid attribute of filter element gives the
name of the filter, and the properties specify any
required filter parameters that are need for its
operation.

 <measurement-point refid="group2" type="time_triggered">
 <properties>
 < property name="trigger">
 < value units="sec">5</value>
 < /property>
 < /properties>
 <metric name="lost_packets">
 < filter refid="example_filter">

<properties>
 <property name="param1" value="10.5"/>
</properties>

 < /filter>
 < /metric>
 </measurement-point>

Figure 4. Filter configuration using experiment

definition

An experimenter can either use one of the default
filters or write a custom filter using the APIs provided
by OML and integrate it with the framework. A base
filter class OMLFilter is provided as part of OML. A
custom filter class must be derived from this base class
and the function get_filtered_values overridden. In
addition to this, the filter definition, conforming to the
OML filter schema, should be provided in XML
format. This definition should list the input and output

parameters of the filter along with their data types.
Sample code for a simple filter is shown in figure 5.

class example_filter: public OMLFilter {
 int filter_param1;

 example_filter (Hashtable filter_params)
 { … }

 vector <void *> get_filtered_values (
 vector <void *> measurement_values
 int value _data_type

)
 { … }
};

Figure 5. Data filter API

It requires, as input, the measurement values that
need to be processed and the data type of the values (0,
1, 2 for integer, float, long respectively) and returns a
void pointer to the results. Filters are applied per metric
in a measurement point. Filter parameters are passed
using a hash table in the filter constructor. These filter
parameters are derived from the experiment definition,
as shown in Figure 4.
3.3.3 Client Side Operation. As and when a set of
measurement values are available, the application calls
OML client API functions such as oml_group1 and
oml_group2 to pass these values to “measurement
points”.

User Application

Measurement point
(group1)

Sample triggered
(100 samples)

Measurement point
(group2)

Time triggered
(5 seconds)

rssinoise

Filter
sample_mean

Filter
min_max

Filter
example_filter

noise rssi lost_packets

OML XDR encoding and transport layer

+

lost_packets

Figure 6. Client side measurement data flow

A “measurement point” accumulates all the incoming
values until the trigger condition (time or sample
based) is met, in which case the “measurement point”
fires all the filters associated with all the metrics. The
results are then combined into one outbound message

and sent to the XDR encoding layer, which eventually
multicasts the encoded values to the collection server.
As seen in Figure 6, metrics can be filtered using
various filter types, by associating with different
measurement points.

3.3.4 Database configuration. At the collection server
side, the application definition is used to create
database schema for the experiment. OML uses XSLT
to convert the application definition to a database
schema file.
 As shown in Figure 7, a database table is created
corresponding to each measurement point; and the
table names are derived from the id attribute of the
group element, i.e. the names of the measurement
points. Each table has sequence number, timestamp and
the OML client’s name/id as mandatory fields; in
addition to the columns which correspond to the id
attribute of each “metric” element. Once the testbed
user defines the experiment, the application definition
is used in conjunction with the experiment definition to
create OML client and server configuration files.

<measurement -points>
 <measurement -point id="group 1">

<metric id="rssi" type=“float"/>
 <metric id=“noise " type=“float"/>

 </measurement -point>
</measurements -points>

Figure 7. Database schema generation

4. Deployment and evaluation experience

This section talks about the real-world OML usage
in ORBIT [1], which is a distributed wireless testbed.
The ease of collecting and analyzing data, real-time
experiment control and performance analysis is
discussed.

4.1. Example experimental setup

A traffic generator application was written to get the
rssi (received signal strength) for each packet, in
addition to the offered load values for the senders, and
throughput values for the receivers. OML interface was

used to input the information about the measurement
points leading to the generation of an application
definition file. This file served as an input to the XSLT
based code generator to automatically generate the
client API, which in turn was integrated with the
application code. The application definition file was
also used to generate the database schema.
 In the second step, the user defined the experiment by
choosing the data filters for each measurement point
defined in the application definition. This experiment
definition was used in conjunction with the application
definition to generate configuration files for the client
nodes and the OML server. Both, the application and
the experiment definition were stored in the database
with the experiment results.

Four runs of the same experiment were done by
simply changing the filter parameters to gradually
increase the amount of OML data generated by the
experiment nodes running the application. Each time
the filter parameters were changed, only the experiment
definition was modified, hence avoiding the re-
compilation and redeployment of the application code
on the experiment nodes.

4.2. Real-time data availability and control.

The experimenter wrote a simple Perl script, shown
in Figure 8, to keep track of the number of packets loss,
one of the measurement data metrics reported by the
application using OML. User kept increasing the data
rate till the number of packets lost went beyond a
threshold of 150, when the user stopped the
experiment. This shows the controllability which is
achievable by real-time data collection using OML
framework.
#!/usr/bin/perl
use Mysql;
...
$dbh = Mysql->connect($hostname, $database, $user, $password);
$sql_query="select lost_packets from group 2 where node_id='node3-4' order by
sequence_no desc limit 1";

for(;;) {
 sleep(1);
 $sth = $dbh->query($sql_query);
 while(@record = $sth->FetchRow) {
 print "$record[0]\n";
 if ($record[0] == 150) {
 quitExperiment ();
 } else {
 increaseDataRate (10);
 }
 }
}

Figure 8. Real-time data analysis and

application control

4.3. Collocation of Information and Ease of
Data Analysis

All the information pertaining to a particular
experiment is stored in the database along with the
experimental results. The application definition that
defines what is being measured, the experiment
definition that defines how it is being measured, the
experiment results and the OML performance metrics
are all available to the user at a single point. This
allows quicker analysis and correlation of experiment
results; as well as quick and easy repeatability of the
same experiment. It also enables dynamic
controllability of experiment by providing near real-
time access to the data.

Figure 9. Import data from MySQL into Excel

Storing experimental and OML performance results
in the SQL database allows the use of standard analysis
tools like Matlab and Excel. Importing data into these
tools is an easy and user friendly process.

Figure 9 shows the ease with which experimental
results can be imported and plotted in Microsoft Excel.

First the data source is selected and then the fields to be
viewed and analyzed are imported in the Excel sheet.

4.4. OML performance measurements.

OML uses itself to collect the measurements data
pertaining to its own performance. The OML server
collects various statistics like the number of packets
received; packets dropped, XDR decoding errors, SQL
errors and the bdb queue size, and store this data along
with the experiment data.

Figure 10. OML performance analyses

Figure 10 shows the performance of the OML
server, which was running on a dual Xeon processor
with 1 GB of memory and a gigabit network card.
Performance analysis is done as a function of
measurements traffic load. These results represent the
average packet rate, for four different data filter
configurations, from eight client nodes reporting
measurements using OML. As we can see the average
queue size remains small, even though the maximum
queue size can be quite large due to bursty
measurements traffic. No OML packet loss, XDR
decoding errors and SQL errors were found.

5. Future work

The current version of OML does not allow
changing filter configurations during the execution of
the experiment. In future versions, we plan to support
this feature as well as extend the library of data filters
to provide more functionality for the same. Extensions
with built-in measurements, like Ganglia [5], are also in
the future roadmap. We are hopeful of deploying this

framework on larger, distributed and diverse
environments to further study its performance and
enhance its usability.

6. Conclusion

This paper presents a generic, scalable and flexible
framework for the collection of application generated of
data in a distributed environment. This framework
reduces the burden of data collection on application
developers by providing simple APIs for transport of
data in a reliable manner. Usability of the framework is
significantly enhanced by use of technologies like SQL,
hence allowing the use of standard tools for data
analysis. Use of multicasting and Berkeley database
enables a reliable and flexible framework; and provides
network and computational scalability. The results show
the benefits, usability and the performance of the
framework.

The OML framework has been successfully
deployed as part of the ORBIT testbed and has been in
extensicve use over the last few months. Besides
measuring experimental data, OML is being used for
data collection from a third-party wireless network
monitoring tool. The ORBIT [1] hardware monitoring
system also uses OML to collect and report various
health parameters associated with the testbed nodes.

7. References

[1] I. S. D. Raychaudhuri, M. Ott, S. Ganu, K.
Ramachandran, H. Kremo, R. Siracusa, H. Liu, M. Singh,
"Overview of the ORBIT Radio Grid Testbed for Evaluation
of Next-Generation Wireless Network Protocols," submitted
to the IEEE Wireless Communications and Networking
Conference, New Orleans.

[2] "RFC 1014 - XDR: External Data Representation
Standard," http://www.faqs.org/rfcs/rfc1014.html

[3] Sleepycat software Berkeley DB product website,
http://sleepycat.com/products/db.shtml

[4] MySQL product website, http://www.mysql.com

[5] Matthew L. Massie, Brent N. Chun, David E. Culler,
 “The Ganglia Distributed Monitoring System: Design,
Implementation, and Experience”

[6] Matlab product website, http://www.mathworks.com

500 1000 2000 4000
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Received Packets Per Second

Q
u
eu
e
S
iz
e

Min Queue Size
Average Queue Size
Max Queue Size

CPU: 0.7%
Mem: 25MB

CPU: 2%
Mem: 70MB

CPU: 3.5%
Mem: 100MB

CPU: 6.5%
Mem: 200MB

from imagination to impact © 2009 NICTA. All Rights Reserved.

Max Ott
NICTA

OML Overview

2 © 2009 NICTA

Goals of OML

•  All experiment output in one place
•  Capturing everything – most importantly meta data
•  Separation of concerns

–  Instrumenting
–  Collecting

•  Minimizing measurement collection overhead
–  Time
–  Traffic interference

•  Support for steerable experiments
–  Access to data in different places

3 © 2009 NICTA

P
ro

ce
ss

in
g

Concepts

Application
Service

Processing
Caching

Processing
Caching

Steering/Feedback

Fl
ow

 C
on

tro
l

4 © 2009 NICTA

MStream

Concepts

Application
Service

MPoint

Filter

Storage

Stream Table

5 © 2009 NICTA

Defining MPoints

 defApplication(’system:app:otg') do |a|
 …
 a.defMeasurement(’channel') do |m|
 m.defMetric(’size', :int)

 m.defMetric(‘speed’, :float)
 …
 end

 end

6 © 2009 NICTA

Defining MStreams

 defGroup('g2') do |g|
 g.addApplication(’system:app:otg') do |a|

 a.measure('channel', :samples => 10) do |m|
 m.metric 'size', :filter => ’avg’
 end

 end
 end

7 © 2009 NICTA

OML – Dynamic Schema

8 © 2009 NICTA

Defining Visualisation

addTab(:graph2) do |tab|
 # Epsilon
 tab.addGraph("Epsilon", opts) do |g|
 lin = []; log = []
 t = ms('precision')
 q = t.where(t['oml_sender_id'].eq(2))
 q.project(:oml_ts_server, :Precision_min).each do |row|
 t, p = row.tuple
 unless (p == 0)
 lin << [t, p]
 log << [t, Math.log(p)]
 end
 end
 g.addLine(lin, :label => 'Lin')
 g.addLine(log, :label => 'Log', :yaxis => 2)
 end
end

9 © 2009 NICTA

Defining Visualisation

10 © 2009 NICTA

OML’ified Application

•  Traffic Generation/Measurements
–  OTG … Traffic Generator
–  Iperf

•  Monitoring
–  Libtrace
–  Libsigar
–  Spectrum Analyzer
–  GPS
–  (Weather)

•  Components
–  TinyOS/Motes
–  (GnuRadio)

11 © 2009 NICTA

Filters

•  Plug-in Architecture
•  User extensibility
•  Current List

–  Stddev
–  Average
–  First
–  Histogram

12 © 2009 NICTA

Status

•  http://omf.mytestbed.net/projects/show/oml
•  MIT License
•  2009-09-11: Release of version 2.3

–  Support for re-starting existing experiments (long running)
–  Supports for text-based protocol for simple clients
–  Experimental API for implementing custom filters

13 © 2009 NICTA

Future

•  Additional data types (IP, blob)
–  Potentially move to IPFIX

•  Multi-dimensional data (spectrum, geographic – trip line)
•  Triggers (Steerable)
•  Resolve service integration vs. observation
•  Streaming database
•  (Distributed processing – map/reduce)
•  ((Privacy))

from imagination to impact © 2009 NICTA. All Rights Reserved.

Max Ott
NICTA

OML Overview

Measurement Architectures for Network
Experiments with Disconnected Mobile Nodes

Jolyon White, Guillaume Jourjon, Thierry Rakatoarivelo, Maximilian Ott

NICTA?

Australian Technology Park
Eveleigh, NSW, Australia

firstname.lastname@nicta.com.au

Abstract. Networking researchers using testbeds containing mobile
nodes face the problem of measurement collection from partially dis-
connected nodes. We solve this problem efficiently by adding a proxy
server to the Orbit Measurement Library (OML) to transparently buffer
measurements on disconnected nodes, and we give results showing our
solution in action. We then add a flexible filtering and feedback mech-
anism on the server that enables a tailored hierarchy of measurement
collection servers throughout the network, live context-based steering of
experiment behaviour, and live context-based control of the measurement
collection process itself.

Key words: measurement, testbeds, mobile, OML, disconnected measurement

1 Introduction

Distributed networking experiments require distributed measurement collection
systems. Approaches to remote network measurement collection range from ad-
hoc methods used in academia through to large, commercial systems deployed
by network operators. Ad-hoc methods are typically sub-optimal, error-prone,
and time consuming, but available measurement and monitoring frameworks
[11, 12] tend to be prohibitively complex for use in many research projects.
A measurement framework for network research should be simple to use and
administer, but must be flexible enough to match the heterogeneous, dynamic
needs and environments that usually characterize it.

Mobile networking research is a good example. Indeed, for static testbeds, a
simple client/server measurement collection architecture is adequate [5], as long
as the rate of measurement output does not influence the studied phenomena,
and does not overload the collection server. If a testbed network includes mo-
bile nodes, some nodes may not always be connected to the network. In that
? NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

firstname.lastname@nicta.com.au

2 Jolyon White et al.

case, what should happen to the measurements that the disconnected nodes are
generating?

On the other hand, in an experiment where all nodes are always connected,
the rate of generation of measurement data by even a single node may congest
either the network, the measurement collection server, or the client applications
generating the measurements. This can result in lost measurements; worse still,
it can lead to the measurement collection activity influencing the behaviour of
the network under observation, and with it, the results of the experiment.

These two different problems can both be solved by making a single but
important change to the architecture: namely, the addition of a proxy server
on the experiment node, effectively a queue, to act as an intermediary between
the client applications and the measurement collection server. Once the mea-
surement architecture contains such proxy servers on the experimental nodes
themselves, a further innovation of the architecture becomes apparent, that to
our knowledge has not been attempted before. We extend the proxy server to
implement a measurement database instead of just a queue, which allows us to
perform measurement-based feedback to the experiment applications themselves
in what we term distributed, context-based experiment steering. This leads to a
flexible hierarchy of measurement servers for future advanced testbed networks.

In this paper, we consider the architecture of measurement collection frame-
works in detail:

– We describe the two problems of mobility (Section 3.1) and measurement
bandwidth constraints (Section 3.2).

– We show how both of these problems can be solved by introducing a proxy
server to buffer measurements on the local node before sending them to the
central measurement server (Section 3.3).

– We give some quantitative measurements to demonstrate the benefits of this
approach (Section 3.4).

– We discuss extensions to the proxy server to allow measurement-based exper-
iment steering (Section 4).

– We compare and contrast our architecture to existing measurement frame-
works (Section 5).

The measurement architectures described in this paper are embodied in
OML2, the second generation Orbit Measurement Library, which we have devel-
oped and made freely available at [3]. OML is a generic measurement framework
capable of instrumenting the entire software stack, and is not just limited to
network-specific measurements.

2 Background

To set the scene for this paper, we begin with a description of the testbed
network environments that we are considering, and a simple, näıve client/server
architecture for measurements that we use as our starting point.

Measurement Architectures for Network Experiments 3

2.1 Testbed Architectures

Fig. 1 shows a general testbed architecture. The experiment nodes participating
in the experiment use one or more Experiment Networks (EN) to perform the
networking tasks that comprise the experiment itself. Meanwhile, the control
nodes communicate with the experiment nodes using a separate Control Network
(CN) to perform tasks such as imaging the nodes with an operating system
at the start of the experiment, bringing the experiment nodes up, starting the
applications that participate in the experiment on the experiment nodes, logging
status and error information, and ensuring orderly shutdown of the experiment
once it is complete.2

. . .

. . .

Control
Network

Experiment
Networks. .

 .

Control
Node 1

Control
Node K

Experiment
Node 1

Experiment
Node 2

Experiment
Node N

Fig. 1. Generic testbed network architecture.

The architecture in Fig. 1 can contain heterogeneous experiment nodes, each
node connected to different experiment networks. In practice, there will be vari-
ations in the hardware capabilities and available interfaces on each experiment
node. With mobile nodes, the connectivity may even change mid-experiment.

The separate control network minimizes the impact of control tasks on the
behaviour of the experiment tasks, so that the underlying protocols, algorithms,
and applications can be studied in as much isolation as possible. This improves
quality of results and repeatability. However, sometimes we do not have the
luxury of a separate control network. The node hardware might not support
enough interfaces of the right type, or the separate infrastructure required for a
control network might not be available for some nodes. Mobile nodes often have
these properties.

We have drawn the control and experiment networks as single network seg-
ments, but this is just for simplicity: the actual network topology of each network
could be more complex. Also note that infrastructure nodes such as routers could
also be participating in the experiment and generating measurements.
2 We use OMF, a control framework that we have developed, to perform these tasks

on our own testbed networks [16].

4 Jolyon White et al.

2.2 Experiment Node Architecture

Each experiment node runs a number of applications and services (i.e., daemons)
that execute the tasks required to run the experiment itself, as shown in Fig. 2.
These applications and services can communicate with other experiment nodes
using the interfaces e1–eN . They can also access and monitor operating system
information and local devices, such as GPS receivers, temperature sensors, and
pressure sensors.

App 1

App 2

App M

e1

e2

eN

c1

M
ea

su
re

m
en

t L
ib

ra
ry

 (O
M

L)

Control
Network

. . .

. . .

. . .

Experiment
Networks

EN(1)
EN(N)

Local
Files

Experiment Node

Sensing
daemon

System
Monitor

sensor device

Fig. 2. Architecture of an experiment node, showing some applications, a system
monitor daemon generating measurements from information provided by the operating
system, and a sensor daemon generating measurements from an input sensor device.

The applications and services perform measurements of the system under
study, measuring quantities such as:

– network characteristics and impairments (e.g., bandwidth, packet loss rate);
– local context information (e.g., RAM or CPU usage); and
– device-generated data (e.g., GPS coordinates, temperature, pressure),

for example. They use functions provided by the OML measurement library to
send their measurements either to a file on the local filesystem, or to a mea-
surement server on the control network via c1. OML is flexible enough that the
applications can send measurement data to multiple measurement servers if de-
sired. Fig. 2 shows the general case. The node may have only one experiment
network interface (N = 1) and it may have to send and receive control and
measurement data over the experiment interface if no separate control interface
is available.

The experiment nodes may have a wide variety of hardware, operating sys-
tems, attached peripheral devices, and networking interfaces. Thus, the mea-
surement architecture must be portable, flexible, and efficient enough to cope
with such a wide range of platforms.

Measurement Architectures for Network Experiments 5

2.3 Client/Server Measurement Architecture

The simplest distributed measurement architecture, which is our starting point,
is a client/server architecture. OML operates in this fashion in its most basic
configuration. Fig. 3 depicts the data path from a single experiment application
to the server in OML.

F4

F5

F1

F2

F3
OML

Server
SQL

Database

Control Node 1

OML
Server

Control Node 2
local
file

Application liboml2

MP1

MP2

MP3

(x1,...,xN)

(y1,...,yM)

(z1,...,zP)

MS1

MS2

MS3

MS4

MS5

SQL
Database

Fig. 3. Measurement data path in OML. The application illustrated defines three mea-
surement points, and the user has configured the library to generate five measurement
streams.

The application defines a number of measurement points (MP) into which
it injects a stream of typed measurement tuples. Each MP is an interface to
the client library, liboml2. The client library creates a number of measurement
streams (MS), based on the run-time configuration specified by the user in an
XML file, to match the needs of the experiment. Each MS filters the MP inputs
in a configuration defined by the XML file. OML supports built-in and user-
defined filters. Fig. 3 shows that an MP can be a source of data for multiple
MS’s (MP1 participates in streams MS1, MS2, and MS3), and that filter outputs
can be combined to form new streams (filters F1 and F2 are inputs to F3, which
generates stream MS2). Measurement streams can be sent to an OML server or a
local file (also configurable via the XML file) and different measurement streams
can be sent to different destinations, including potentially multiple OML servers.
The filter outputs are also typed tuples.

Currently OML supports integer, floating point, and string data, and we have
plans to add support for more data types such as blobs. OML uses a one-way
protocol initiated by the client. Both text and binary versions of the protocol
are available, and we are currently evaluating adopting IPFIX [6].

The server collects data from each experiment and sends it to a storage
backend. Because the measurement streams consist of sequences of typed tuples,
they are well suited to be stored in tables in a relational database; currently the
concrete backends supported by OML are SQL databases. OML imposes very
little structure on the measurements collected to remain as flexible as possible

6 Jolyon White et al.

and support an evolving research context. The SQL database allows us to offload
the problem of devising our own measurement storage format, and provides easy
and efficient result querying. OML currently supports SQLite directly, but some
OML users have added support for PostgreSQL. We plan to extend OML to
directly support multiple database backends in the future.

There is a table in the database for each measurement stream in each client
application; the same application can be running as part of the same experiment
on multiple nodes, in which case all of their measurement outputs will be stored
in the same table.

3 Measurement in Dynamic Networks

We now describe two scenarios where the assumptions underlying the client/server
architecture are broken, and we further show how our proxy-based architectural
enhancement addresses these problems. These examples are informed by the pre-
vious experiments of users evaluating their own research prototypes on wireless
testbeds, such as the ORBIT or NICTA testbeds [17]. Thus, they represent real
problems that users had to overcome to advance their research agendas.

3.1 Mobile Nodes

Sometimes when users perform experiments involving mobile nodes, they are ex-
plicitly interested in studying the behaviour of networking technologies and algo-
rithms when the mobile nodes move outside the testbed network’s normal wire-
less coverage. For example, smart phones typically have multiple radio interfaces,
such as WiFi, 3G, and WiMAX. We may be interested in the behaviour of a dis-
tributed algorithm that preferentially favours a low-cost radio interface (WiFi)
when available, but falls back on a more expensive interface (3G, WiMAX) if
no other networks are available in the mobile handset’s vicinity [14]. They may
even go out of range of all wireless networks for a period.

Such experiments could be done with real mobile handsets, or they could be
done with mid-range hardware emulating the mobile handsets. In either case,
this configuration causes two problems for measurement collection.

The first problem is that if measurements are sent during the experiment,
then the measurement traffic must often be sent over one of the experiment net-
work interfaces, which may interfere with the experiment itself and taint subse-
quent measurements. Depending on the testbed configuration, the measurement
server may not even be reachable from any of the experiment networks, and this
situation could even extend beyond the duration of the experiment. This leads
to the second problem: what should the mobile node do with the measurements
that it generates while it is out of range of the control network?

We have two options: either drop measurements while the control network
is not reachable, or buffer them until the mobile node reconnects to the control
network. Discounting the first option as undesirable, we must buffer.

Measurement Architectures for Network Experiments 7

3.2 Throughput-Constrained Measurement

Even in networks with a static topology, we still sometimes need to buffer mea-
surement data on the local node. If the experiment involves high traffic rates
on high bandwidth interfaces, then the rate of generation of measurements can
also be very large, and the datapath to the measurement server can become
congested, risking either loss of measurement data or changes in the behaviour
of the experiment applications due to delays in the measurement datapath.

One of the primary aims of the filtering facility of liboml2 is to allow re-
duction of the measurement data that needs to be transmitted to the server,
for instance, using averaging. However, in some circumstances the experimenter
might want to observe effects that the filtering would discard. In that case an-
other solution is required: buffering measurements on the experiment node.

3.3 Proxy Servers

Recalling that we want our measurement framework to be as convenient as
possible for researchers to use, we want to ensure that buffering measurements
does not force complicated modifications to the client applications. Our solution
is to create a separate proxy server on the experiment node. The proxy server
acts as a FIFO queue, but allows the experimenter to gate the FIFO output.

App 1

App 2

e1

e2

c1

M
ea

su
re

m
en

t L
ib

ra
ry

 (O
M

L)

Control
Network

.

Experiment Node

OML
Server

SQL
Database

Control Node

Proxy
Server

ON/OFF

Sensing
daemon

System
Monitor

sensor device

Fig. 4. Measurement architecture with proxy servers.

Figure 4 shows the proxy server architecture. The proxy server presents an
interface to the client applications that is identical to the regular OML server: it
supports TCP or UDP socket connections using the same protocol as the server.
It is thus transparent to the client applications, which do not need to be mod-
ified or re-compiled. The measurement server protocol (TCP/UDP), address,
and port number are run-time configuration parameters, specified on the client
application’s command line or through an XML configuration file.

In Fig. 4, the proxy server is shown running on the same node as the ex-
periment applications, but it can be hosted on a separate node if the situation
requires. However, for the two use-cases we presented in the preceding sections,

8 Jolyon White et al.

running the proxy server on the experiment node is exactly what we want, be-
cause it makes the measurement collection independent of the network. In both
of those cases, the proxy server is configured to buffer all measurement data
in memory until the end of the experiment. At the end of the experiment, the
experimenter instructs the proxy server to turn ‘ON’ the output stream, where-
upon the proxy server connects to the upstream full OML server and transmits
the stored measurements to it.

The proxy server implementation is simple, as it does not have to process
any data on its input stream. Furthermore, since it is a one-way stream, the
proxy server can simply store the raw octets from the experiment applications
in memory, and then replay them out to the OML server verbatim. It also has
the option to write the measurement data to file to provide a backup and limit
its memory usage.

3.4 Results

We now provide some experimental data that demonstrate the management
of the disconnection. This experiment was originally presented at the 4th GENI
Engineering Conference [4]. In this experiment, two mobile nodes exchange UDP
traffic over a WiFi ad-hoc network. One node is stationary, and the other moves
along a short circuit as illustrated in Fig. 5. Both nodes run an OML-enhanced
version of iperf [2]. In addition, the roaming node also runs a GPS application
collecting location information. The UDP traffic and GPS measurements are
collected using the OML framework.

Fig. 5. Path of the roaming node from GPS data (aerial photo from Google Maps [8]).

To demonstrate the proposed proxy scheme, the UDP traffic measurements
are collected via OML over the WiFi network, which will become unavailable as

Measurement Architectures for Network Experiments 9

the roaming node moves away from the static one. However, to allow real-time
visualization during a live demonstration, a second permanent WiMax network
is used to continuously collect GPS information. The duplication of the GPS
measurement stream is completely transparent to the application.

OML
Server

SQL
Database

WiMax -always
connected

during
experiment

On/Off
Wifi -

disconnected
during

experiment

Iperf

MP

GPS

MP

Filters

Fig. 6. OML Internal Configuration of the two Nodes and Server.

We have run this experiment numerous times, with a typical result shown in
Fig. 7. In this figure, the x-axis represents time; the OML server automatically
time stamps all samples received throughout the experiment. The distance was
computed based on the GPS localisation, and the bandwidth was computed
using fixed windows of one second on the receiver side.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

Di
st

an
ce

 (m
)

Ba
nd

wi
dt

h

Time (s)

Distance
Bandwidth

Fig. 7. Packet Loss Rate and Distance in function of the time

In Fig. 7, we can observe the correlation between the distance and the
achieved bandwidth. This can be explained by the fact that during this time
the two nodes are disconnected. During this disconnection period, all the mea-
surements are stored by the proxy. Once the roaming node gets closer to the

10 Jolyon White et al.

static node and to the OML server, the proxy is set to resume sending the
buffered measurements to the OML server. Another advantage of OML in this
experiment is the automatic time stamping, which allows the time evolution of
different quantities to be put in perspective.

4 Further Extensions

Once the measurement architecture contains a processing element beyond the
client applications on the experiment node, it is natural to ask what further sorts
of processing could be done on the node itself. This line of thought takes the
measurement architecture away from a basic client/server architecture. In the
following sections, we describe two architectural enhancements we have devel-
oped as a result of discussions with users of OML whose needs were not met by
the standard existing OML facilities.

4.1 Hierarchical Measurement Collection

In a measurement application that generates large volumes of data, it may be
either too expensive or impracticable to store every sample collected. This may
not be a problem if the utility of the collected samples decreases over time. For
instance, in a server load-monitoring application, high resolution measurements
for the last hour might be interesting and useful, but the same for a period six
months ago might be useless. An average over a coarser timescale might suffice
for historical records of that age or older, so that full-rate, high resolution data
does not need to be stored in its entirety.

Measurements in current
period

Raw Measurements Table Filtered Measurements

Filter

Periodic
SQL query

Optional

Measurement
streams

from clients

Fig. 8. Server architecture for hierarchical measurement collection.

The basic architecture described in the previous section does not permit
this type of volume-thinning. To support it, we augment the server architecture
as shown in Fig. 8. The server includes a query mechanism that periodically
executes an SQL query on any measurement table. The results of the query are
appended to another table. The query can, e.g., compute an average of numeric
quantities stored in the table, then cull the rows that were averaged, to prevent
the table size from increasing beyond a set bound. This gives a compromise

Measurement Architectures for Network Experiments 11

between the storage requirements and availability of high resolution data, and
is similar to stream databases [7] and round-robin databases [18].

We can extend this idea in three ways. First, we can compose a hierarchy
of measurement timescales to suit the requirements of various different users of
the collected data. For instance, we could store high resolution measurements
for the last ten minutes, medium resolution for the last hour, and low resolution
for the last six months.

Secondly, the destination table for the periodic query results does not have
to be hosted on the same machine. We can instead transmit the aggregate mea-
surements to another OML server, using the same measurement protocol that
the client applications use. The hierarchy of timescales is then reflected in the
hierarchy of collection servers. This flexibility can be put to several uses, such
as server load management or multi-site redundant storage, but we will describe
what we think are some of the most interesting ones in the following subsection.

Thirdly, if SQL does not provide enough expressive power to compute the
desired summary metric for a particular measurement table, we can augment
the server with a configurable filtering mechanism, identical to the one available
to the client applications in OML. This is the filter block shown in Fig. 8.

We can use the measurement stream architecture in the client application to
implement very flexible measurement collection configurations. For instance, we
can create two streams from the same MP and send one stream to a local high-
resolution server on the experiment node and the other to a lower-resolution
server elsewhere on the network.

4.2 Context-Driven Experiment Steering

We now have an architecture with an OML server that can do periodic computa-
tions on the received data, and send results of the queries to an upstream server.
The local OML server can be running on the experiment node itself. We could
also use this mechanism to periodically check for particular events that might
be reflected in the measurement data. If we add a feedback mechanism, then we
can use this event detection facility to modify the course of an experiment while
it is running. We call this capability context-driven experiment steering.

Fig. 9 illustrates this architecture. The feedback loop can be contained en-
tirely within one node if the OML server is running on the same node as the
applications. More generally, the feedback mechanism is distributed, so that a
remote OML server in the measurement hierarchy can give steering feedback to
one or many nodes participating in the experiment.

One example of such an application would be to detect when the quality of
service to a node becomes too degraded, and remove the node from the exper-
iment. Another approach might be to only start some of the experiment appli-
cations after a condition has been met, for example, in a peer-to-peer download
experiment, only starting the peers once the seeder has downloaded enough of
the file from a central server. The idea of trip lines, where a mobile node cross-
ing from one geographic region to another causes some action to be performed,

12 Jolyon White et al.

Measurements in current
period

Raw Measurements Table

Filter

Periodic
SQL query

Optional

Measurement
streams

from clients

Application 1 Application 2 Application N. . .

PubSub Network

Detected
event
signal

Event
notifications

(Applications can
be local or remote)

Fig. 9. Context-driven experiment steering. Measurements are used to detect con-
ditions that trigger pre-defined behaviour in the client applications, using a pub-
lisher/subscriber notification mechanism.

is a third example of experiment context that can be implemented using our
measurement architecture [9].

We are considering a publisher-subscriber framework to implement the feed-
back mechanism, such as Dbus or XMPP. The client applications must subscribe
to and listen for particular events, and the server must have a mechanism for
specifying what events are published and how they are detected. This could use
a combination of SQL queries and filtering, with the final stage of the filter being
a predicate function. The management framework can also play a part in the
feedback mechanism, e.g., for starting and stopping experiment applications.

This extension opens up a range of new possibilities for experiment design
and measurement applications.

4.3 Context-Driven Measurement

If we have a feedback mechanism that detects events in the measured environ-
ment, why not then allow detected events to influence the measurement process
itself? This is the third extension. We reflect the feedback mechanism back onto
the OML server, so that we can tailor the measurement strategy to the current
conditions. For instance, suppose we are only interested in low-resolution mea-
surements of a particular quantity most of the time, but when an alarm occurs,
we want to start recording high-resolution measurements. In this case we can
add a second query/filter path to Fig. 8, and switch between them based on a
feedback signal, as in Fig. 10.

With this third extension, we have outlined our architecture for distributed
measurement collection. We now go on to compare our architecture against other
work in the field.

Measurement Architectures for Network Experiments 13

SQL
Filter

OML server
input stream

Filter

Filter
SQL

SQL
High Res

Low Res

Measurement
streams

from clients

Filtering Control

HI/LO

Detected
event
signal

Measurement
control signal

Fig. 10. Context-driven measurement. A measured event feedback signal is used to
influence the measurement capture process itself.

5 Related Work

There are various existing measurement frameworks, some of them open source
and some of them proprietary. Some of them are geared towards network mon-
itoring for system administration, whereas others are more useful in research
contexts.

CoMo (Continuous Monitoring) [11, 12] is a network measurement system
based around measurement of packet flows. It has core processes that are linked
in stages, namely packet capture, export, storage, and query. These processes
capture, filter, measure, and store properties of packets and packet traces. The
core processes are linked by user-defined modules that are used to customize
the measurement system and implement filtering functions. The query process
provides an interface for distributed users to run queries on the captured packet
traces.

The core processes are designed for speed and efficiency and are in charge
of data movement operations. One of the overriding goals in CoMo is to make
querying as efficient as possible[11], because CoMo can operate on very large data
sets (∼ 1 TB). CoMo modules essentially pre-compute the answers to queries,
speculatively. Queries identify traffic with specific properties, such as finding
flows that match certain criteria. As the CoMo system itself, including captured
packet storage, can be distributed across the network, CoMo introduces the
notion of “distributed indices” to speed up the process of finding the locations
of packet traces of interest to a query.

CoMo is a highly tailored tool designed for efficient packet trace capture
and analysis. OML, by contrast, is a generic framework that can instrument the
whole software stack, and take input from any sensor with a software interface.
One of CoMo’s great strengths is its query architecture, and OML does not
include a comparable mechanism, relying instead on its SQL database storage
substrate to provide the experimenter with a query interface to her data.

14 Jolyon White et al.

One could also compare OML to network adminstration monitoring tools
such as SNMP (covered by numerous IETF RFC’s, starting with RFC 1155,
1157, for instance). SNMP has a high overhead compared to OML. Monitoring
in SNMP is based around OID’s—object identifiers—that identify measurement
items of interest and are essentially numeric and not human-readable. A cen-
tral management information base (MIB) must be maintained to map OID’s to
human-readable strings. This is at odds with the needs of research, which is by
nature dynamic and often not centralized enough to permit the maintenance of
an MIB, which also adds unnecessary cost. In OML, a user wanting to measure
a new quantity simply defines a new measurement point in the relevant client
application and configures the filters for his experiment run to filter it into the
database. There is no central organization needed. From our survey, there do not
appear to be suitable open source implementations that could be easily adapted
to the needs of research.

Of all the measurement architectures we surveyed, MINER [1, 5] appears to
be the closest to our architecture. MINER is not available as open source soft-
ware, but [5] describes its architecture. MINER is Java-based and comprises a
measurement architecture as well as elements of what we refer to as the man-
agement framework. A client library provides an API for defining and running
experiments, which consist of invocations of tools. A core component is the server
component of the infrastructure and the mediator between the client library and
the measured network. A tool proxy component acts as a mediator between the
core component and the MINER tools. A tool proxy executes a scenario request
on a network node, starts the requested MINER tools, and then grooms the
measurement results back to the core.

The MINER tools are Java components that may provide measurement re-
sults directly, or may be wrappers around external libraries or applications that
do the actual measurements. MINER tools can be defined by the user.

Our management framework (OMF [16]) is decoupled from the measurement
aspect of experimentation. This makes each component more generic and flexible.
The MINER approach of providing a wrapper interface for existing tools is a
great idea. The main method to instrument existing applications with OML is
to directly modify their source code (e.g., iperf in Section 3.4). When these
sources are not available, it is easy to develop a short program to process the
application’s outputs and collect the resulting measurements using OML.

Emulab [19] is a large network emulator based on a set of computers that
can be configured into various topologies through emulated network links. Many
experimenters currently use Emulab testbeds to evaluate their research schemes.
It allows them to monitor and capture network traffic (packet headers or full
payload) on links and LANs within their experimental topologies. The capture
points, equivalent to OML measurement points, are either on the resource that
emulates a link, or on end-point resources. In both cases, the captured data
are stored as a local file on that resource. To analyse the experimental results,
the user has to retrieve the resulting file from all the used resources at the
end of an experiment. This simple scheme is limited to the measurement of

Measurement Architectures for Network Experiments 15

only network traffic, and does not allow the monitoring of any experiment’s
contextual variables (e.g., node location) or application integrated data (e.g.,
download/upload statistics for a peer-to-peer application).

PlanetLab [15] is a global research platform based on more than 1000 dis-
tributed computers, which are hosted by independent organisations. It is the
primary large-scale testbed used for experimental overlay and service oriented
systems (e.g., distributed storage, peer-to-peer content distribution). Multiple
services are currently deployed on Planetlab, which provide users with measure-
ments of their experimental slices and the whole testbed, such as CoMon [13],
or PlanetFlow [10]. CoMon provides different statistics (e.g., memory, disk us-
age) at a node or a slice granularity. However, it does not support collection of
application or experiment generated measurements. CoMon uses a client/server
design like the basic OML architecture. The processed measurements are made
available to the entire experimenter community via a distributed content deliv-
ery system. PlanetFlow also uses a client/server scheme. On each node, a client
entity captures all outgoing packet headers, then aggregates and classifies them
into flows. This process is akin to the OML client filtering. However PlanetFlow
does not provide any other client-side flow processing. These flow measurements
are centrally collected in a MySQL database accessible via a Web interface.

6 Conclusions

In this article we presented extensions to the versatile measurement library OML.
The new features that we presented allow the experimenter to extend the range
of possible measurements. In particular, we detailed the transparent integration
of a proxy server on the experiment node allowing measurements in a discon-
nected environment. This solution has been made possible by the addition of a
measurement proxy server on the mobile node within the existing measurement
framework. The first goal of this proxy is to buffer the measurement stream
without losing any information. We identified two main fields of application for
this measurement feature, a disconnected experiment and a shared control and
experiment network. We demonstrate the benefit of this new feature in the con-
text of a simple disconnected experiment during the 4th GEC and presented the
results in this article. Finally we extended this architecture with hierarchical
measurement collection and server-side filtering, which allows us greater control
over the measurement collection process, and with a feedback mechanism that
allows us to steer both experiments and the measurement process itself while
the experiment is running, based on the current measured context.

Acknowledgements

This work was achieved in the context of the Onelab2 projects funded by the
E.U. 7th Framework Program, and the GENI (Global Environment for Network
Innovations) initiative funded by the U.S. National Science Foundation.

16 Jolyon White et al.

References

1. MINER: The Measurement Infrastructure for Network Research. http://miner.

salzburgresearch.at/index.php.
2. NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool. http://

dast.nlanr.net/Projects/Iperf/.
3. OML: The OMF Measurement Library. http://omf.mytestbed.net/projects/

show/oml.
4. The 4th GENI engineering conference, March 2009.
5. C. Brandauer and T. Fichtel. MINER – a measurement infrastructure for network

research. In Testbeds and Research Infrastructures for the Development of Networks
& Communities, International Conference on, pages 1–9, Los Alamitos, CA, USA,
Apr. 2009. IEEE Computer Society.

6. B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard),
Jan. 2008.

7. M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky, and N. Thom-
bre. Continuous analytics: Rethinking query processing in a network-effect world.
In Fourth Biennial Conference on Innovative Data Systems Research (CIDR 2009),
Asilomar, CA, January 2009.

8. Google. Google maps. http://maps.google.com/.
9. B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. Bayen, M. An-

navaram, and Q. Jaconbson. Virtual trip lines for distributed privacy-preserving
traffic monitoring. In ACM MobiSys, 2008.

10. M. Huang, A. Bavier, and L. Peterson. PlanetFlow: Maintaining Accountability
for Network Services . Operating Systems Review, 40(1), 2006.

11. G. Ianaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The CoMo
white paper. Technical Report IRC-TR-04-17, Intel Research Cambridge, Sept.
2004.

12. G. Iannaccone. CoMo: An open infrastructure for network monitoring—research
agenda. Technical report, Intel Research Cambridge, Feb. 2005.

13. K. Park and V. S. Pai. CoMon: A Mostly-Scalable Monitoring System for Planet-
Lab. In ACM SIGOPS Operating Systems Review, 2006.

14. H. Petander. Energy aware network selection using traffic estimation. In Proc. of
MITCN 2009 workshop in ACM Mobicom conference, September 2009.

15. PlanetLab Consortium. Planetlab: An open platform for developing, deploying,
and accessing planetary-scale services. http://www.planet-lab.org/.

16. T. Rakotoarivelo, M. Ott, I. Seskar, and G. Jourjon. OMF: a control and man-
agement framework for networking testbeds. In SOSP Workshop on Real Overlays
and Distributed Systems (ROADS ’09), page 6, Big Sky, USA, Oct. 2009.

17. D. Raychaudhuri et al. Overview of the ORBIT Radio Grid Testbed for Eval-
uation of Next-Generation Wireless Network Protocols. In proc. IEEE Wireless
Communications and Networking Conference (WCNC), 2005.

18. Tobi Oetiker. RRDtool. http://oss.oetiker.ch/rrdtool/.
19. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. SIGOPS Oper. Syst. Rev., 36(SI):255–270, 2002.

http://miner.salzburgresearch.at/index.php

http://miner.salzburgresearch.at/index.php

http://dast.nlanr.net/Projects/Iperf/

http://dast.nlanr.net/Projects/Iperf/

http://omf.mytestbed.net/projects/show/oml

http://omf.mytestbed.net/projects/show/oml

http://maps.google.com/

http://www.planet-lab.org/

http://oss.oetiker.ch/rrdtool/

		Measurement Architectures for Network Experiments with Disconnected Mobile Nodes

		Jolyon White, Guillaume Jourjon, Thierry Rakatoarivelo, Maximilian Ott

		Introduction

		Background

		Testbed Architectures

		Experiment Node Architecture

		Client/Server Measurement Architecture

		Measurement in Dynamic Networks

		Mobile Nodes

		Throughput-Constrained Measurement

		Proxy Servers

		Results

		Further Extensions

		Hierarchical Measurement Collection

		Context-Driven Experiment Steering

		Context-Driven Measurement

		Related Work

		Conclusions

		References

GWD-R
Network Measurements Working Group
https://forge.gridforum.org/projects/nm-wg

Martin Swany, UDel, (editor)
March 16, 2010

An Extensible Schema for Network Measurement and Performance Data

Status of This Document

This document provides information to the Grid community regarding the design formats used in the storage
and exchange of network measurements. Distribution is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007-2010). All Rights Reserved.

Contents

1 Introduction 3
1.1 Goals . 3

2 Design Philosophy 3

3 Basic Elements 3
3.1 Metadata . 4

3.1.1 Subject . 4
3.1.2 EventType . 4
3.1.3 Parameters . 4
3.1.4 Parameter . 4
3.1.5 Key . 5

3.2 Data . 5
3.2.1 Datum . 5

3.3 Container Elements . 5
3.3.1 Message . 5
3.3.2 Store . 5

4 XML Namespaces 5
4.0.3 Namespace Versioning . 6
4.0.4 Namespace Expansion . 7

4.0.4.1 Defining the Namespace . 7
4.0.4.2 Modeling Information . 7

4.0.4.2.1 Ping Subject . 8
4.0.4.2.2 Ping Parameters . 8
4.0.4.2.3 Ping Datum . 9

4.0.4.3 Create Schema and Examples . 9

nm-wg@ogf.org 1

GWD-R March 16, 2010
5 Merge Metadata 9

5.1 Merge Operation . 9
5.2 Mergeable Elements and Recursion . 10
5.3 Duplication, Augmentation, and Replacement . 10
5.4 Merge Examples . 10

6 Operation Metadata 18
6.1 Operation Chaining . 18

6.1.1 Operator Chaining Examples . 19

7 Schema 20
7.1 Base Schema . 20
7.2 Time Schema . 25
7.3 Topology Schema . 27

8 Examples 29
8.1 Schema for ping . 29
8.2 Instance document for ping . 32

9 Notational Conventions 35

10 Security Considerations 35

11 Contributors 36

12 Acknowledgements 36

13 Glossary 36

14 Intellectual Property Statement 36

15 Disclaimer 36

16 Full Copyright Notice 36

nm-wg@ogf.org 2

GWD-R March 16, 2010

1 Introduction

This document presents anextensible encoding standardfor network measurementand performance
data. Uniform encoding of this class of information is a key problem for federated network management,
and multi-domain dynamic provisioning of network circuits, as well as in advanced distributed computing
environments such as the Grid.

This work is born of the need for a common mechanism for theexchangeand storageof network
measurement, management and performance data. In the case of research-oriented networks, parties often
want to exchange network performance data with neighbors for debugging purposes. In general, however,
there is no single monitoring system that is in use. In the Grid community, the need to exchange network
metrics of various sorts is often highlighted. In short, it is highly desirable to have an extensible schema for
network performance information that gives a common, general framework for representation and exchange.

This document builds on previous versions of the network measurement schemata. This document de-
scribes “Version 2” of the Grid Forum’s Network Measurement Working Group (NM-WG) schema. While
unpublished, the initial measurement schema (known as “Version 1”) serves as a basis for this work. Design
considerations presented in this recommendation are build upon the successes and failures of all previous
working group activity.

1.1 Goals

The goal is to define aneutral representation for network measurements that can be easily extended to
support new types of data. This representationSHOULD identify formsof network performance data as
well as to create standardizedmechanismto bothdescribeandpublishthese metrics.

2 Design Philosophy

One of the high-level design goals of this representation is tonormalizethe data representation by removing
as much redundancy as reasonable. The basic schema design is based on the observation that network
measurement data can be divided into two major classes. The first class is theMetadata, which describes
the typeof measurement data, theentity or entitiesbeing measured, and the particularparametersof the
measurement. The second class is theData itself, which is, at its simplest, atimestampand avalue, or
vector of values. This division of Metadata and Data is present throughout the system. This structure
is present both in theMessagessent between various data elements as well as in dataStores– persistent
storage of XML documents representing system state.

3 Basic Elements

This schema defines the basic elements that can be used to represent performance data. The first distinc-
tion is between theMetadata, the relatively static information regarding the data, andData itself, which
generally changes over time. The key idea is that, for repeated measurements, which is a common case for
performance data in networks and Grids, the Metadataneed notbe repeated with each measurement, saving
space and effort.

Each top-level element in this schema has an Identifier attribute calledId . There are many cases in
which one element needs toreferenceanother. For these cases anId Reference(idRef) is used. Note that we
have not used theXML Schema ID andIdRef types, although theyMAY be appropriate. The reason is that

nm-wg@ogf.org 3

GWD-R March 16, 2010
with an IdRef, the corresponding IDMUST appear in the same document. We envision remote Id references
(with e.g., a generic URL or a WS-Addressing EPR) and thus find this limitation overly restrictive. (Note
that another possibility is the use of a simple element to resolve the local ID and point to remote Metadata.)

3.1 Metadata

The MetadataMUST describe the Dataunambiguously. To accomplish this, the MetadataMUST include
key elements:

• Subject — The Subjectidentifies the entity being measured. This could include the network path
between a pair of hosts, an interface on a router, or a specific location on the network from which flow
or packet data is captured.

• EventType — TheEventTypeidentifies exactly what sort of measurement Event occurred.

• Parameters— TheParametersdescribe the details of the measurement.

• Key — TheKey identifies a completeMetadatatriplet (Subject, EventTypeand/orParameters) that
was previously retrieved.

3.1.1 Subject

TheSubjectidentifies the measured entity. For networks, thisMAY represent a path between two hosts or
an interface on a network device. In most cases we rely on topological elements to fill in the subject of a
measurement. Minimal topological elements have been defined as part of this base schema. However, more
extensive definitions are currently being explored by other working groups including the Network Markup
Language Working Group (NML-WG)[5].

3.1.2 EventType

TheEventTypeis the canonical name of the aspect of the subject being measured, or the actual event (i.e.
characteristic) being reported. The expected value of this element is aURI string, similar to a namespace
(see Section 4 for information on namespaces).

Using a structured value, such aURI, allows greater control in defining the eventType. This format
allows for behavior of an implementation to be more directly controlled (e.g. a specificversionin the URI
may indicate a change in operations for a data type; alternatively we may choose to reject data that is too
“new” or too “old” based on the encoding).

3.1.3 Parameters

TheParametersdescribe the exact way in which a particular measurement was gathered. These can include
parameters to active measurement tools. Essentially, anything needed to determine which measurements are
fungible SHOULD be included here. Parameters take the form of name, value pairs stored inParameter
elements. The value of a parameter can itself be a complex XML element.

3.1.4 Parameter

TheParameteris a name and value pair used to describe a single aspect of the entireParametersset of a
measurement.

nm-wg@ogf.org 4

GWD-R March 16, 2010
3.1.5 Key

The Key element holds the results of a previous query for aSubject, EventTypeand/orParameterstriplet.
The key can be used toreplay this query to have faster access to the underlying data set.

3.2 Data

TheDataelement has an identifier (id) and an identifier reference (metadataIdRef) that refers to theMeta-
data that describes it. It contains some number ofDatumor Keyelements.

3.2.1 Datum

TheDatumelements hold thetimestampandvalueof the measurement or event. For many network mea-
surement data sources, this can be a time-series of timestamp, value pairs. For other measurement types, the
result valueMAY be a vector.

3.3 Container Elements

The above-named elements are currently contained in two types of outer elements,MessageandStore. They
have exactly the same structure, i.e. containingMetadataandData elements. EachMAY have an attribute
called type to indicate its type. EachMAY also contain oneParameterselement to indicate Message- or
Store-level parameters and options.

3.3.1 Message

TheMessageelement is meant to serve as a transient container for the transport of performance information.
This element containsMetadataandDatapairs and could also contain aParameterselement.

3.3.2 Store

The Storeelement is a stationary container for the long term storage of performance information. This
element containsMetadataandData pairs and could also contain aParameterselement.

4 XML Namespaces

A key facet in this schema is the observation that any of the “core” elements can be used to describe any
network measurement, but the exact content of the eachSHOULD vary with the measurement type. We
have adopted XMLnamespacesto allow reuse of these same elements, but to facilitate variation in the
contents for each different type of data. In this way, some superficial examination of the structure of a
message or information store can take place without looking at the details of the contents. Most processing
functionalitySHOULD be able to consume new data types with no modification.

All namespace extensionsMUST contain the elements defined in thebasenamespace. Each namespace
MAY redefinethe meaning of elements oraddnew elements but elementsSHOULD NOT be removed that
were previously defined. When released, each version of a namespaceMUST specify the versions of their
parentnamespaces. If a new version of a parent namespace is released, the version of the child namespace
MUST be changed to add any new elements or properties added in the parent. Example Namespaces:

nm-wg@ogf.org 5

GWD-R March 16, 2010
• Base: http://ggf.org/ns/nmwg/base/2.0/

• Achievable Bandwidth - Base Extension: http://ggf.org/ns/nmwg/characteristics/bandwidth/acheiveable/2.0/

• Iperf - Base Extension: http://ggf.org/ns/nmwg/tools/iperf/2.0/

We envision there being two major classes of namespace URIs. The first is a canonical name based on the
Hierarchy of Network Measurementsfrom this working group [2] . The second is based on an organization’s
domain name and allows for autonomous extension in much the same way as the Enterprise branch of the
OID space [10] allows. Finally, as this specification does not address the embedding of this schema into
other systems, we note that the relevant parts of the namespace can be appended to another namespace if
one is already in use.

4.0.3 Namespace Versioning

The developers of the schemata realized early in the design process that new ideas will quickly depose older
practices, particularly when reference implementations implementRECOMMENDED practices. This dual
development track (e.g. implementations vs the creation of scalable standards) has forced a key change in
the creation and use of XML namespaces. First recognized by members of the OGF community at large, a
system to define identifying names uniquely and in a uniformly is paramount [3]. This namespace versioning
scheme is a benefit for implementers as they can easily plan for backward and forward compatibility of
community recommendations; the scheme also allows standards writers the freedom to introduce new and
experimental ideas without pollution of the schema space.

This working group has adopted several components from the OGF community practice, but differ on
some structural considerations. An example of the namespace format that theNM-WG has adopted for the
basenamespace is “http://ggf.org/ns/nmwg/base/2.0/”

Breaking down each portion of the namespace, we are able to decompose into the following components:

• Scheme/Domain- http://ggf.org

• Customs- /ns

• Project - /nmwg

• Part/Extension - /base

• Version - /2.0

The first key difference between theNM-WG approach and the community document is a choice to
subdivide the domainlater in the namespace versus as the first item (e.g. instead of “http://schema.ogf.org”
we are using “http://ggf.org/ns”). This choice was initially arbitrary, andSHOULD NOT change the overall
intention of the approaches. As early work was based before theGGF to OGF name change we have kept
the legacy domain for historic reasons. We fully anticipate that new versions of the schema will adopt the
proper domain name.

A second difference is the choice to place the version as thelast entity of the namespace instead of
immediately after a group designation. This choice is related to implementation details of software consum-
ing these recommendations. To better support theobject orienteddesign of the schema the full “name” of
each element (including the namespace) needed to be present, sans version information. The easiest way

nm-wg@ogf.org 6

GWD-R March 16, 2010
to accomplish this is to place the version as the last piece of identifying information. ThisSHALL NOT
change the meaning of the original community recommendation.

The final difference is the reliance on incremental version numbers (e.g.2.0) versus using thedate(e.g.
20070707). We feel this difference is superficial andSHOULD the community decide that using the date is
more appropriate the switch is easily managed.

4.0.4 Namespace Expansion

The namespace-based approach alluded to in Section 4 provides extensibility by re-defining the “core”
elements in a tool- or characteristic-specific namespace. To motivate the example presented in Section 8,
we will briefly describe the procedure used to define a measurement in an expansion namespace. Note that
a new namespaceSHOULD be generated when encoding a form of measurement that cannot be adequately
represented with the “base” namespace or any existing extensions.

4.0.4.1 Defining the Namespace

The namespaceSHOULD be similar to the “base” namespace but feature a differentPart/Extension and
potentially a differentVersion. Alternatively theDomain andCustoms MAY change if a group that is not
affiliated with theOGF becomes involved in the definition process. The values for thePart/Extension will
vary depending on if a newcharacteristicis being defined, or if data specific to atool is being encoded.
Below we define thePing tool, which also has the characteristic of being aRound Trip Delaymeasurement.
The following represent the proposed namespaces:

• Round Trip Delay - Base Extension: http://ggf.org/ns/nmwg/characteristic/delay/roundTrip/2.0/

• Ping - Base Extension: http://ggf.org/ns/nmwg/tools/ping/2.0/

For consistency we have kept theVersion the same, this can be altered when desired. With the names-
pace carved out, we can move on to the next task of laying out the model of aping measurement.

4.0.4.2 Modeling Information

It is paramount that the “core” elements be reused in schema extension. This implies that weMAY define
new namespaces for select elements in the base schema, butMAY choose to keep several within the base;
for some of the enclosing elements (e.g.metadata, data) this isREQUIRED . In general any elementMAY
be redefined but to allow for implementation flexibility it often makes sense to leave as many as possible
within the base to avoid complexity in the XML parsing libraries. The following is a list of elements from
“base” that will remain in the original namespace:

• Message

• Store

• Metadata

• EventType

• Parameter

nm-wg@ogf.org 7

GWD-R March 16, 2010
• Key

• Data

These itemsSHOULD be re-purposed for the new measurement type into the new namespace:

• Subject

• Parameters

• Datum

The following sections will suggest modifications necessary to enable theping datatype in thetools
namespace.

4.0.4.2.1 Ping Subject

Theping subjectSHOULD be specific to the “subject” of aPingmeasurement. We learn through observing
the tool that it involves two entities: asourceanddestinationhost. These hosts can be described as being
“Layer 4” beings in theOSI protocol model[6].

A subject for this measurementSHOULD consist of a description of both of these hosts, preferably
in an accepted format such as the topology descriptions being produced by theNML-WG . We SHOULD
ensure that some basic information about each host is captured:

• Host IP Address

• Address Type (e.g.IPv4, IPv6)

• Hostname

• TCP Ports used

4.0.4.2.2 Ping Parameters

Theping parameterscan loosely be translated as the parameters that were used in the running of the mea-
surement tool. For example if there are options to vary thenumber of packets sent or thesize of each packet,
this informationSHOULD be encoded in the parameters definition. The following represents some good
choices for parameters in the ping tool, this list is not exhaustive:

• Number of packets to send

• Interval between packets

• Size of each packet

• Time to live (TTL) of each packet

nm-wg@ogf.org 8

GWD-R March 16, 2010
4.0.4.2.3 Ping Datum

The final behavior to model is theping datum: the results of the measurement. ThePing tool reports the
results of sending packet “probes” from the source to the destination in a sequence. The results in this case
are a measurement of how long the operation tool as well as reporting thesequence numberof a given
probe and the individualTTLvalues of each. While not explicitly reported, we also desire thetimethat each
measurement has either started or ended. The following represents the measurement data we wish to capture
form the ping tool, this list is not exhaustive anyMAY vary depending on specific instances ofPing in use:

• Measurement Time (round trip delay)

• Measurement units (e.g.seconds)

• “Wall clock” - when the measurement started or ended

• Packet TTL

• Ping probe sequence number (in relation to the ping measurement as whole).

4.0.4.3 Create Schema and Examples

Using the information presented in Section 4.0.4.2 we have produced a simple ping extension consisting of
both a schema and example instance. These examples appear at the end of this document in Section 8.

5 Merge Metadata

While a complete Metadata block can be used to unambiguously describe a Data block, it is often desirable
to combine multiple, partial Metadata blocks together. The main reason for this is reuse of information.
Using the “metadataIdRef” attribute of a Metadata block allows us to form a “chain” of Metadata blocks.

This section presents the major uses ofmerge chaining; note that individual implementationsMAY
choose to strictly or loosely interpret these guidelines for the sake of performance or protection. The schema
offers no specific guidance on these issues in favor of simply describing the structural composition of both
the input data and the resulting output.

5.1 Merge Operation

As the name implies, the purpose is to “merge” orcombinemetadata elements through this structure. There
are many things we should consider when describing this operation:

• Which elements aremergeable?

• How muchrecursionis needed for mergeable elements?

• When should weduplicateelements?

• When should wereplaceelements in the course of merging?

nm-wg@ogf.org 9

GWD-R March 16, 2010
As stated previously, the schemata itself does not offer any suggestions as to what is agood mergevs.

a bad merge. There are no rules regarding whichtypesof dataSHOULD andSHOULD NOT be merged.
There is no guidance on when weSHOULD duplicate or replace elements.

WeRECOMMEND some very simple and succinct guidelines to this operation. ThereSHALL always
be exceptions to rules, therefore the reader is encouraged to think carefully about whatMAY be needed
when implementing this recommendation.

5.2 Mergeable Elements and Recursion

When performing the merge operation weSHOULD first look at thetop-levelelements; namely subject,
eventType, and parameters. When faced with two metadata blocks to be merged, we only wish to combine:

• Like Elements (e.g. sharing the same localname)

• Elements in the same namespace

• Elements sharing the same (or “similar”) eventType

When this first criteria is met, weSHOULD recurse downward and keep trying to merge until we reach
the bottom of the structure. How far should we venture into the XML structure looking for similarities or
differences? This question does not have a definite answer such asstop at the grandchild of the current
element. While this MAY be frustrating, domain knowledgeMAY help you make a passable decision
especially with regards to topology based elements.

Like elements that do not share a common namespace or eventTypeSHALL require special rules that
MAY differ between implementations. Depending on the level of protection or speed we wish to attain,
these rulesMAY vary.

5.3 Duplication, Augmentation, and Replacement

When we are faced withlike elements thatMAY NOT share a common namespace or eventType, we
SHOULD NOT combine. WeMAY try to find the least significantnamespace or eventType and work
from there. Additionally weMAY run into items that areexactlythe same (such as certainparameters, or
eventTypes). In some cases weSHOULD take care toadd all of these together to make duplicates; other
casesMAY dictate total replacement.

As an example of extreme cases, consider taking a very safe approach to the combining of elements (i.e.
not merginglike elements with different namespaces). This approach will ensure that we protect the schema
differences butMAY result in many morewronganswers. The converse is a very dangerous approach where
we merge items that could be different on the inside. ThisMAY result in an approach similar toI know what
you meantand could yield a more robust result data set.

5.4 Merge Examples

A simple example of merge chaining is to partially specify a metadata (leaving out perhaps one unspec-
ified element) and then constructing new elements from this original. This example does not feature any
overwritingof duplicate elements.

Take for example a physicalLayer 3interface used to measure SNMP data. If we wanted to specify the
two commondirections(in andout) we could construct a chain similar to the below example.

f

nm-wg@ogf.org 10

GWD-R March 16, 2010

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s3">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>

</nmwg:metadata>

Note that the merging is performed via the use of themetadataIdReftag in the metadata element. This
is a “red flag” used to indicate a chain should be resolved. The Figure 1 demonstrates the linking between
the metadata elements. The resulting XML structure after merge chaining is also listed below.

M e t a d a t a 1

M e t a d a t a 2

M e t a d a t a 3

Figure 1: Graphical representation of merge chaining.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

nm-wg@ogf.org 11

GWD-R March 16, 2010
<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

For continuity, this example has not attempted to modify themetadataIdRefattribute. Implementations
MAY choose to do so if they feel the need. Because eventTypesMAY be repeated (either as theeventType
element or asparameters) we must take special care when merging them. The next example features multi-
ple eventType merge chaining. This example also includes a two-step process where the results of the first
merging operation feed into the process for the second.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m2">
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

The resulting output and cartoon are pictured below. We did take two major issues into consideration:
multiple parametersandeventTypeelements that did conflict, and the double merge chaining. Implemen-
tations that do not support multiple eventTypes (or simply wish to not implement a naive form of merge
chaining)SHOULD NOT worry about special cases such as Figure 2.

nm-wg@ogf.org 12

GWD-R March 16, 2010

M e t a d a t a 1

M e t a d a t a 2

M e t a d a t a 3

Figure 2: Alternate graphical representation of merge chaining.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m3" metadataIdRef="m2">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

nm-wg@ogf.org 13

GWD-R March 16, 2010
ImplementationsMAY treat particular elements (such as eventTypes and parameters with certainname

attributes) in a special way. The implementation is careful not to overwrite or lose any information and will
only add these items together. This is not the case for all elements though, consider the following example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifName>eth1</nmwgt:ifName>
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>

</nmwg:metadata>

Note that weprobablywanted to change thedirection for this particular interface, not necessarily the
ifNameelement. The output of this chain is shown below.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>in</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth1</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:direction>out</nmwgt:direction>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

This example shows that it is very easy to introduce semantic errors when designing a chaining in-
stance. It also shows that the implementationMAY NOT be interested in protecting a poorly designed chain
from being accepted. It is possible to build in different rules instead oflast seen valuesuch asfirst seen,
original, or other combinations. It is imperative that implementations describe nuances of merge chaining,
particularly when interoperability becomes an issue.

nm-wg@ogf.org 14

GWD-R March 16, 2010
A final example comes when we deal with items with the samelocalname, but perhaps a different

namespace. There are several approaches that can be taken to dealing with this type of situation. The SNMP
example follows a safe approach of simply adding all of the elements in question and not attempting to
internally merge at all. This causesunreadablemetadata in many cases, but does not permitdata pollution.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

There are three approaches that I will illustrate here:safe yet stupid, dangerous yet intelligent, and finally
slow and steady. The last approach is sometimes used in practice; finding the proper balance will require
some thought (depending on how sensing or accurate an implementation wishes to become. Approach one
yields output similar to the below example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

nm-wg@ogf.org 15

GWD-R March 16, 2010
Note that this is not schema valid, and presumably would not return results from the backend storage.

This is rather ironic given that we are trying to preserve validity on the schema side, yet still generate a
clearly invalid result. The other end of the spectrum gives a result such as the example below.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

The so called “stupid” part of this comes from not caring aboutnamespaces, and only merging based on
localname. Because the source metadata featured thenetutil namespace it remains and all other items are
added to it.

The approach taken by some implementations is to have a littledomainknowledge before making a
quick judgement. Knowing full well thatnmwgis a more general namespace thannetutil, the implementation
tries to guess the intent and goes with the most general namespace in order to support a richer query set.
Internally anything that utilizes thenmwgnamespace receives a wild card when performing searches. When
we are faced with a choice between specific and general, the implementation errs on the side of general. An
example of this merge is below.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<nmwg:subject id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

nm-wg@ogf.org 16

GWD-R March 16, 2010
</nmwg:parameters>

</nmwg:metadata>

A final question remains: what happens if you are dealing with two very specific namespaces such as
this example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<neterr:subject xmlns:neterr="http://ggf.org/ns/nmwg/characteristic/errors/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>

</nmwgt:interface>
</neterr:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:hostName>localhost</nmwgt:hostName>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

Some implementations will still guess “general” and convert to thenmwgnamespace. The resulting data
set will take on an interesting look:

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<neterr:subject xmlns:neterr="http://ggf.org/ns/nmwg/characteristic/errors/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>

</nmwgt:interface>
</neterr:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:parameter>
</nmwg:parameters>

</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2" metadataIdRef="1">
<nmwg:subject id="s2">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>

</nmwgt:interface>
</nmwg:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/errors/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

Clearly the two eventTypes (for utilization and errors)MAY NOT appear in the same metadata descrip-
tion, but again the implementation can try to help out a bit. eventType descriptions are interpreted asor
operations when performing a query. Therefore even if our chain was constructed poorly, our final results
will be rather robust (perhaps a bit more robust than needed). The implementation designers will no doubt
settle on an approach that fits well for the data they are exposing.

nm-wg@ogf.org 17

GWD-R March 16, 2010

6 Operation Metadata

In addition to describing sets of raw data, Metadata blocks can also be used to describetransformation
operationsperformed, or requested, on a set of data. Thus, a list of Metadata blocks, including origin and
transformations, can be used to unambiguously describe theprovenanceof any performance data. This can
also be used in cases where the transformation isinternal and the original data is not available. This can
be thought of as describing set operations on the original set as it passes through a list of operators. This
operation has been termed “Operation” chaining.

This section presents the major uses of this operation; note that individual implementationsMAY choose
to strictly or loosely interpret these guidelines for the sake of performance or protection. The protocol itself
offers no specific guidance on these issues in favor of simply describing the structural composition of both
the input data and the resulting output.

6.1 Operation Chaining

Operation chaining involves the application of aoperator (or function) to the underlying dataset that a
particular metadata describes. We can think of this much like a database operation, where the first metadata
is used to select a set of data, and subsequent metadata elements that are chained in this manner are used
to select from that data set based on some other criteria. Consider Figure 3 as an example of the internal
process using an operation chain.

datum ... datum ...
datum ... datum ...
datum ... datum ...

Operation:
select

datum ...
 datum ...
datum ... datum ...

M e t a d a t a 1 M e t a d a t a 2

Figure 3: Graphical results of an operation step on a dataset.

An alternate use case is using theoperatorto perform a functional translation onall of the data contained
in the first set when creating the second set. Figure 4 illustrates this “filter” operation by showing the
contents of a data set before and after the operation. The first metadata is used to get the “base” dataset.
After applying the second metadata are are left with the final data set: a subset of the first.

datum ... datum ...
datum ... datum ...
datum ... datum ...

Operation:
Summarize

M e t a d a t a 1 M e t a d a t a 2

DATUM ... DATUM ...
DATUM ... DATUM ...
DATUM ... DATUM ...

Figure 4: Graphical results of an operation step on a dataset.

nm-wg@ogf.org 18

GWD-R March 16, 2010
It is important to note that even though we are manipulating the data through this form of chaining,

we should not be changing the original data, or the related metadata elements. Chaining in general is a
non-destructive operation.

Operations can vary from time range selection to aggregations such as computing a cumulative distribu-
tion function (CDF). Current experience has named most statistical and database operations as candidates
for this form of chaining, although new uses are being devised. Operations are extensible via the same XML
namespace/URI techniques described earlier.

6.1.1 Operator Chaining Examples

Operation chaining is an easier concept to manage than merge chaining, partially because there are fewer
rules and nuances. As stated above, it is easy to think of the dataset for the source metadata to beinput to a
function that is named by the metadata utilizing the operation chain.

The syntax of operation chaining is similar to that of merge chaining (by usingmetadataIdRefattributes)
but the placement is a bit different. Consider this example.

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m1">
<netutil:subject xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" id="s1">

<nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">
<nmwgt:ifAddress type="ipv4">127.0.0.1</nmwgt:ifAddress>
<nmwgt:hostName>localhost</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:eventType>
<nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>
<nmwg:parameters id="p1">

<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/tools/snmp/2.0</nmwg:parameter>
<nmwg:parameter name="supportedEventType">http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:parameter>

</nmwg:parameters>
</nmwg:metadata>

<nmwg:metadata xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" id="m2">
<select:subject id="s2" metadataIdRef="m1" xmlns:select="http://ggf.org/ns/nmwg/ops/select/2.0/"/>
<select:parameters id="param2c" xmlns:select="http://ggf.org/ns/nmwg/ops/select/2.0/">

<nmwg:parameter name="startTime">1121472000</nmwg:parameter>
<nmwg:parameter name="endTime">1121904000</nmwg:parameter>
<nmwg:parameter name="consolidationFunction">AVERAGE</nmwg:parameter>
<nmwg:parameter name="resolution">60</nmwg:parameter>

</select:parameters>
<nmwg:eventType>http://ggf.org/ns/nmwg/ops/select/2.0</nmwg:eventType>

</nmwg:metadata>

The reference is placed in thesubjectelement in this case, as in merge chaining this is a signal to the
implementation that operation chaining is desired. This indicates that theinput is the data pointed to by the
first metadata and theoutputwill be a subset of this. For the sake of these examples we are dealing with the
selectnamespace as our operator of choice due to an abundance of examples and the common use case of
selection based on time. Other operation examples should work in the same manner.

Because the operations of a operation chain are essentiallyinternal we do not present what resultant
XML should look like. Currently implementations ignore many of the steps that may go into reforming the
XML for response messages in favor of simply returning thebackendrepresentation of metadata. While
quick and easy, this does lead to information loss (specifically when dealing with the various ways to im-
plement merge chaining). Client applications may have no reason to see the original operation information,
and therefore are built not to need it.

nm-wg@ogf.org 19

GWD-R March 16, 2010

7 Schema

The following sections show the formal schemata of theNM-WG using the elements described in Section 3
and concepts presented in this document. Each is written in the RELAX-NG[7] language. Through the use
of tools such as Trang[8] and MSV[4] it is possible to convert this to other widely accepted formats such as
XSD[9].

We are presenting three major components of the entire schemata:

• Base- A representation of the elements in Section 3

• Time - A simple schema that describes representation of time values in network measurements

• Topology - A basic representation of network topology; this work will be superseded by the efforts of
more relevant working groups (such as theNML-WG)

7.1 Base Schema

The “base” schema is so named because it contains the essential elements of this work. Subsequent exten-
sions and profiles will incorporate the items presented below.

Begin Schema

##
#
File: nmbase.rnc - Main schema definition
Version: $Id: nmbase.rnc 341 2008-04-24 21:52:11Z boote $
Purpose: This is the main schema file, it defines the
general structure of an NMWG message or store
#
##

##
Namespace definitions
##
namespace nmwg = "http://ggf.org/ns/nmwg/base/2.0/"

##
Include additional functionality from other files
##
include "nmtime.rnc"
include "filter.rnc"

##
Every NMWG document should begin with either a ’store’ or
’message’ element
Patterns are defined for the content of each element.
#
Example (using message):
#
<nmwg:message id="OPTIONAL_ID"
messageIdRef="OPTIONAL_REFERENCE_ID"
type="REQUIRED_TYPE"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- OPTIONAL PARAMETERS -->
#
<!-- OPTIONAL (MULTIPLE) METADATA -->
#
<!-- OPTIONAL (MULTIPLE) DATA -->
#
</nmwg:message>
#
##

start =
(

element nmwg:message {
MessageContent

} |

nm-wg@ogf.org 20

GWD-R March 16, 2010
element nmwg:store {

StoreContent
}

)

MessageContent =
Identifier? &
MessageIdentifierRef? &
Type &
Parameters? &
(

Metadata |
Data

)+

StoreContent =
Identifier? &
MessageIdentifierRef? &
Type &
Parameters? &
(

Metadata |
Data

)+

##
Metadata is the information that describes data. This
information doesn’t change over time
#
#
Example:
#
<nmwg:metadata id="REQUIRED_ID"
metadataIdRef="OPTIONAL_REFERENCE_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- TBD OPTIONAL SUBJECT -->
#
<!-- TBD OPTIONAL PARAMETERS -->
#
<!-- TBD OPTIONAL EVENTTYPE -->
#
<!-- TBD OPTIONAL KEY -->
#
<!-- ANY OPTIONAL (MULTIPLE) ELEMENT IN ANY NAMESPACE -->
#
</nmwg:metadata>
#
##

Metadata =
element nmwg:metadata {

(
Identifier &
MetadataIdentifierRef? &
MetadataContent

),
anyElement*

}

MetadataBlock =
Subject? &
Parameters?

MetadataContent =
(

MetadataBlock |
FilterMetadataBlock

) &
EventType? &
Key?

##
Subject identifies an endPoint (or points), perhaps the name of
a service or some other form of physical location. For the
purpose of the general case, we make no assumptions on potential
elements and allow all elements, in any namespace. Verification
can be handled in subsequent schema files.
#
Example:
#
<nmwg:subject id="REQUIRED_ID"
metadataIdRef="OPTIONAL_REFERENCE_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#

nm-wg@ogf.org 21

GWD-R March 16, 2010
<!-- ANY ELEMENT IN ANY NAMESPACE -->
#
</nmwg:subject>
#
##

Subject =
element nmwg:subject {

SubjectContent
}

SubjectContent =
(

Identifier &
MetadataIdentifierRef?

),
anyElement*

##
Parameters and Parameter elements can be used in a number of
ways in: 1) the message to signify items such as time stamp
or authorization or 2) metadata or data to specify filters or
special cases for the information. A ’parameters’ block
has an id and encloses one to many ’parameter’ elements.
These elements have a required ’name’, and may contain
an attribute, element, or text value (only one please;
software using this should consider complex elements, then
text, and finally the value attribute; exceptions should
be thrown on duplicates).
#
Example:
#
<nmwg:parameters id="REQUIRED_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<nmwg:parameter name="REQUIRED_NAME" value="OPTIONAL_VALUE"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- ANY TEXT, OR ANY ELEMENT ANY NAMESPACE (IF YOU DID NOT
USE THE VALUE ATTRIBUTE) -->
#
</nmwg:parameter>
#
<!-- MORE PARAMETERS -->
#
</nmwg:parameters>
#
The namespaces can of course be different.
#
##

Parameters =
element nmwg:parameters {

ParametersContent
}

ParametersContent =
Identifier &
Parameter+

Parameter =
element nmwg:parameter {

attribute name { xsd:string } &
(

attribute value { xsd:string } |
(

anyElement |
text

)
)

}

##
Event type is a simple text element used to describe the
characteristic or event of the data.
#
Example:
#
<nmwg:eventType xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- TEXT -->
#
</nmwg:eventType>
#
##

nm-wg@ogf.org 22

GWD-R March 16, 2010
EventType =

element nmwg:eventType { xsd:string }

##
The key is used to return a ’pointer’ or otherwise special piece
of identifying information in response to a request. For now,
this information is enclosed only within a parameters block.
The optional ID can be used to track past searches.
#
Example:
#
<nmwg:key id="OPTIONAL_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- OPTIONAL PARAMETERS -->
#
</nmwg:key>
#
##

Key =
element nmwg:key {

Identifier? &
(

Parameters |
FilterParameters

)
}

##
The data block is complex and has the potential to contain
many things. The data block can be used to return a metadata
block from a request, commonTime or datum elements, keys,
or something that we have perhaps not defined as of yet.
#
Example:
#
<nmwg:data id="REQUIRED_ID"
metadataIdRef="OPTIONAL_REFERENCE_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- OPTIONAL (MULTIPLE) METADATA -->
#
<!-- OR -->
#
<!-- TBD OPTIONAL (MULTIPLE) COMMON TIME ELEMENTS AND
OPTIONAL (MULTIPLE) DATUM ELEMENTS-->
#
<!-- OR -->
#
<!-- TBD OPTIONAL (MULTIPLE) DATUM ELEMENTS -->
#
<!-- OR -->
#
<!-- OPTIONAL (MULTIPLE) KEY ELEMENTS -->
#
<!-- OR -->
#
<!-- ANY OPTIONAL (MULTIPLE) ELEMENT IN ANY NAMESPACE -->
#
</nmwg:data>
#
##

Data =
element nmwg:data {

(
Identifier &
MetadataIdentifierRef? &
(

Metadata* |
(

commonTime+ &
Datum*

) |
Datum* |
Key*

)
),
anyElement*

}

##
CommonTime is used as a shortcut that is able to ’factor out’
a frequently occurring time range that a group of datum (or
other) elements might share, thus reducing the verbosity of the

nm-wg@ogf.org 23

GWD-R March 16, 2010
XML representation. CommonTime is similar to the other NMWG time
stamps (from nmtime.rnc) in its potential time representations.
#
It is unfortunate that it needs to be in this file and not
nmtime.rnc, but as it occurs outside the datum, it is here.
#
Example:
#
<nmwg:commonTime type="REQUIRED_TYPE" value="OPTIONAL_VALUE"
duration="OPTIONAL_DURATION"
inclusive="OPTIONAL_INCLUSIVE_FLAG"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- TBD OPTIONAL START TIME ELEMENT (USE END TIME OR
DURATION) -->
#
<!-- TBD OPTIONAL END TIME ELEMENT (ONLY WITH START TIME) -->
#
<!-- TBD OPTIONAL TIME VALUE ELEMENT (USE IF NO VALUE
ATTRIBUTE) -->
#
<!-- TBD OPTIONAL (MULTIPLE) DATUM ELEMENTS -->
#
<!-- ANY OPTIONAL (MULTIPLE) ELEMENT IN ANY NAMESPACE -->
</nmwg:commonTime>
#
##

commonTime =
element nmwg:commonTime {

(
Type &
(

TimeStamp |
(

StartTime &
(

EndTime |
Duration

)
)

) &
Datum*

),
anyElement*

}

##
The datum is meant to be generic in this case because specific
namespace declarations should be used to better define what
format that datum should have.
#
Example:
#
<nmwg:datum ANY_ATTRIBUTE
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- ANY ELEMENT IN ANY NAMESPACE OR ANY TEXT -->
#
</nmwg:datum>
#
##

Datum =
element nmwg:datum {

anyThing
}

##
Common elements are defined as named patterns as they are re-
used several times.
##

Identifier =
attribute id { xsd:string }

MetadataIdentifierRef =
attribute metadataIdRef { xsd:string }

MessageIdentifierRef =
attribute messageIdRef { xsd:string }

Type =
attribute type { xsd:string }

nm-wg@ogf.org 24

GWD-R March 16, 2010
##
This sequence allows any element, attribute, or text (regardless
of name or namespace) into the document when invoked.
##

anyElement =
element * {

anyThing
}

anyAttribute =
attribute * { text }

anyThing =
(

anyElement |
anyAttribute |
text

)*

##
This sequence allows any element, attribute, or text (only in the
NMWG namespace) into the document when invoked.
##

anyNMWGElement =
element nmwg:* {

anyNMWGThing
}

anyNMWGAttribute =
attribute * { text }

anyNMWGThing =
(

anyNMWGElement |
anyNMWGAttribute |
text

)*

End Schema

7.2 Time Schema

The time schema features a simple schema capable of representing time in the data portion ofNM-WG
encoded information. This schema does not offer a complex time definition, and may fall short of what is
required for many high performance measurement tools. The members of this group fully expect this work
to be augmented and eventually replaced by stronger representations that will come from members of the
network measurement community.

Begin Schema

##
#
File: nmtime.rnc - NMWG Time definitions
Version: $Id: nmtime.rnc 358 2008-06-05 15:14:11Z swany $
Purpose: This describes a set of time formats for
representing measurements.
#
##

##
Namespace definitions
##
namespace nmtm = "http://ggf.org/ns/nmwg/time/20070914/"

##
Regular time is attached to a specific datum instance; it is
essentially the same as before, but cannot have anything
’inside’ of it. The type can be simple, like UNIX, or it
could be something like timeRange or timeInterval. If this is
the case, we would then see the two extra time designators for
the start and end (or duration)
#

nm-wg@ogf.org 25

GWD-R March 16, 2010
Example:
#
<nmtm:time type="REQUIRED_TYPE" value="OPTIONAL_VALUE"
duration="OPTIONAL_DURATION"
inclusive="OPTIONAL_INCLUSIVE_FLAG"
xmlns:nmtm="http://ggf.org/ns/nmwg/time/2.0/">
#
<!-- TBD OPTIONAL START TIME ELEMENT (USE END TIME OR
DURATION) -->
#
<!-- TBD OPTIONAL END TIME ELEMENT (ONLY WITH START TIME) -->
#
<!-- TBD OPTIONAL TIME VALUE ELEMENT (USE IF NO VALUE
ATTRIBUTE) -->
#
</nmtm:time>
#
#
Time types are enumerated as follows:
#
* unix: integral seconds since Jan 1, 1970 (UTC)
#
* iso9601/rfc3339:
#
full date/time representation. Examples from RFC-339:
#
Here are some examples of Internet date/time format.
#
1985-04-12T23:20:50.52Z
#
This represents 20 minutes and 50.52 seconds after the 23rd hour of
April 12th, 1985 in UTC.
#
1996-12-19T16:39:57-08:00
#
This represents 39 minutes and 57 seconds after the 16th hour of
December 19th, 1996 with an offset of -08:00 from UTC (Pacific
Standard Time). Note that this is equivalent to 1996-12-20T00:39:57Z
in UTC.
#
1990-12-31T23:59:60Z
#
This represents the leap second inserted at the end of 1990.
#
1990-12-31T15:59:60-08:00
#
This represents the same leap second in Pacific Standard Time, 8
hours behind UTC.
#
1937-01-01T12:00:27.87+00:20
#
This represents the same instant of time as noon, January 1, 1937,
Netherlands time. Standard time in the Netherlands was exactly 19
minutes and 32.13 seconds ahead of UTC by law from 1909-05-01 through
1937-06-30. This time zone cannot be represented exactly using the
HH:MM format, and this timestamp uses the closest representable UTC
offset.
#
##

Time =
element nmtm:time {

attribute type { xsd:string } &
(

TimeStamp |
(

StartTime &
(

EndTime |
Duration

)
)

)
}

precisionUnits must be one of the recognized SI units
The most complete list I could currently find is at:
http://en.wikipedia.org/wiki/Orders_of_magnitude_%28time%29
#
synchronized SHOULD be set true if the party generating the timestamp
has a clock that is synchronized to UTC using an external source
(e.g., the attribute should be set true if GPS hardware is used and it
indicates that it has acquired current position and time or if NTP is
used and it indicates that it has synchronized to an external source,
which includes stratum 0 source, etc.). If there is no notion of
external synchronization for the time source, the attribute SHOULD be set
to false. If the attribute is not set at all, the synchronization
status of the timestamp can not be determined except through external

nm-wg@ogf.org 26

GWD-R March 16, 2010
knowledge.
Precision =

(
(

attribute precision { xsd:unsignedInt } &
attribute precisionUnits { xsd:string } &
attribute synchronized { xsd:boolean }?

) |
element nmtm:precision {

attribute precisionUnits { xsd:string } &
attribute synchronized { xsd:boolean }? &
xsd:unsignedInt

}
)

TimeStamp =
(

(
attribute value { xsd:string } |
element nmtm:value { xsd:string }

) &
Precision?

)

Duration =
attribute duration { xsd:string }

TimeContent =
attribute type { text } &
attribute inclusive { text }? &
TimeStamp

StartTime =
element nmtm:start {

TimeContent
}

EndTime =
element nmtm:end {

TimeContent
}

End Schema

7.3 Topology Schema

The topology schema contains elements that define simple aspects of network topology. The elements in
this work are by no means exhaustive and cover only common measurement cases such as measurements
originating from the 3rd and 4th “Layers” of theOSI protocol model.

As noted above there has been significant work in theNML-WG to define network topology that is both
scalable and sharable; theNM-WG expects to depreciate this topology schema in time when there concrete
standards published. A migration plan and information document from theNM-WG is fully expected in
this time of transition.

Begin Schema

##
#
File: nmtopo.rnc - Schema to describe topological
elements.
Version: $Id: nmtopo.rnc 341 2008-04-24 21:52:11Z boote $
#
##

##
Namespace definitions
##
namespace nmwgtopo = "http://ggf.org/ns/nmwg/topology/2.0/"

##
Covers the basic point to point measurement situation. The two
points are a source and destination; may contain information

nm-wg@ogf.org 27

GWD-R March 16, 2010
such as hostname or ip address, and port number when applicable.
#
Example:
#
<nmwgtopo:endPointPair
xmlns:nmwgtopo="http://ggf.org/ns/nmwg/topology/2.0/">
#
<nmwgtopo:src type="REQUIRED_TYPE" value="REQUIRED_VALUE"
port="OPTIONAL_PORT"/>
#
<nmwgtopo:dst type="REQUIRED_TYPE" value="REQUIRED_VALUE"
port="OPTIONAL_PORT"/>
#
</nmwgtopo:endPointPair>
#
##

EndpointPair =
element nmwgtopo:endPointPair {

EndpointPairContent
}

EndpointPairContent =
element nmwgtopo:src {

EndpointContent
} &
element nmwgtopo:dst {

EndpointContent
}

##
Similar to above, from one point only.
#
Example:
#
<nmwgtopo:endPoint type="REQUIRED_TYPE" value="REQUIRED_VALUE"
port="OPTIONAL_PORT"/>
#
##

Endpoint =
element nmwgtopo:endPoint {

EndpointContent
}

EndpointContent =
(

attribute value { xsd:string } |
text

) &
attribute type { xsd:string } &
attribute port { xsd:string }?

##
When looking at network utilization numbers (from a router or
related software) there is a different set of applicable
information
#
Example:
#
<nmwgtopo:interface xmlns:nmwgtopo="http://ggf.org/ns/nmwg/topology/2.0/">
#
<nmwgtopo:ipAddress type=’REQUIRED_TYPE’> TEXT </nmwgtopo:ipAddress>
#
<nmwgtopo:hostName> TEXT </nmwgtopo:hostName>
#
<nmwgtopo:ifName> TEXT </nmwgtopo:ifName>
#
<nmwgtopo:ifDescription> TEXT </nmwgtopo:ifDescription>
#
<nmwgtopo:ifAddress type=’REQUIRED_TYPE’> TEXT </nmwgtopo:ifAddress>
#
<nmwgtopo:ifHostName> TEXT </nmwgtopo:ifHostName>
#
<nmwgtopo:ifIndex> TEXT </nmwgtopo:ifIndex>
#
<nmwgtopo:type> TEXT </nmwgtopo:type>
#
<nmwgtopo:direction> TEXT </nmwgtopo:direction>
#
<nmwgtopo:authRealm> TEXT </nmwgtopo:authRealm>
#
<nmwgtopo:classOfService> TEXT </nmwgtopo:classOfService>
#
<nmwgtopo:capacity> TEXT </nmwgtopo:capacity>
#

nm-wg@ogf.org 28

GWD-R March 16, 2010
</nmwgtopo:interface>
#
##

Interface =
element nmwgtopo:interface {

InterfaceContent
}

InterfaceContent =
element nmwgtopo:ipAddress {

Address
}? &
element nmwgtopo:hostName { xsd:string }? &
element nmwgtopo:ifName { xsd:string }? &
element nmwgtopo:ifDescription { xsd:string }? &
element nmwgtopo:ifAddress {

Address
}? &
element nmwgtopo:ifHostName { xsd:string }? &
element nmwgtopo:ifIndex { xsd:string }? &
element nmwgtopo:type { xsd:string }? &
element nmwgtopo:direction { xsd:string }? &
element nmwgtopo:authRealm { xsd:string }? &
element nmwgtopo:classOfService { xsd:string }? &
element nmwgtopo:capacity { xsd:string }?

Address =
(

attribute value { xsd:string } |
text

) &
attribute type { xsd:string }

End Schema

8 Examples

This section includes examples of network measurements rendered in our schema. These examples are not
intended to be normative, although at this time of this writing, they are in use.

8.1 Schema for ping

Begin Schema

##
#
File: ping.rnc - Specialized schema for the ping
tool
Version: $Id: ping.rnc 341 2008-04-24 21:52:11Z boote $
Purpose: Defines elements to be used in the representation
of ping measurements.
#
##

##
Namespace definitions
##
namespace nmwg = "http://ggf.org/ns/nmwg/base/2.0/"
namespace ping = "http://ggf.org/ns/nmwg/tools/ping/2.0/"
namespace nmwgr = "http://ggf.org/ns/nmwg/result/2.0/"

##
Include additional functionality from other files
##
include "nmtopo.rnc"
include "nmtopo_ver3.rnc"
include "result.rnc"
include "nmbase.rnc" {

Metadata |= PingMetadata
Data |= PingData

}

nm-wg@ogf.org 29

GWD-R March 16, 2010
##
Metadata
##

PingMetadata =
element nmwg:metadata {

Identifier &
MetadataIdentifierRef? &
PingMetadataContent

}

PingMetadataBlock =
PingSubject? &
(

PingParameters |
Parameters

)?

PingMetadataContent =
(

PingMetadataBlock |
FilterMetadataBlock

) &
EventType? &
Key?

##
Redefined ping subject allows only an endPointPair, and the
two id attributes.
#
Example:
#
<ping:subject id="REQUIRED_ID"
metadataIdRef="OPTIONAL_REFERENCE_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/tools/ping/2.0/">
#
<nmwgtopo:endPointPair xmlns:nmwgtopo="http://ggf.org/ns/nmwg/topology/2.0/">
#
<nmwgtopo:src type="REQUIRED_TYPE" value="REQUIRED_VALUE"
port="OPTIONAL_PORT"/>
#
<nmwgtopo:dst type="REQUIRED_TYPE" value="REQUIRED_VALUE"
port="OPTIONAL_PORT"/>
#
</nmwgtopo:endPointPair>
#
</ping:subject>
#
##

PingSubject =
element ping:subject {

Identifier &
MetadataIdentifierRef? &
(

EndpointPair |
L4EndpointPair

)
}

##
This is simply the regular method of doing parameters with an
enumeration to limit what ’names’ are accepted and an outer
ping: namespace for the parameters.
#
Example:
#
<ping:parameters id="REQUIRED_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/tools/ping/2.0/">
#
<nmwg:parameter name="REQUIRED_ENUM_NAME" value="OPTIONAL_VALUE"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- ANY TEXT, (IF YOU DID NOT USE THE VALUE ATTRIBUTE) -->
#
</nmwg:parameter>
#
<!-- MORE PARAMETERS -->
#
</ping:parameters>
#
##

PingParameters =
element ping:parameters {

Identifier &

nm-wg@ogf.org 30

GWD-R March 16, 2010
PingParameter+

}

PingParameter =
element nmwg:parameter {

attribute name { "count" | "interval" | "deadline" |
"packetSize" | "ttl" | "arguments" |
"valueUnits" | "numBytes" |
"numBytesUnits" } &

(
attribute value { text } |
text

)
}

##
The data block is complex, and has the potential to contain
many things. The data block can be used to return a metadata
block from a request, commonTime or datum elements, keys,
or something that we have perhaps not defined as of yet.
#
Example:
#
<nmwg:data id="REQUIRED_ID"
metadataIdRef="OPTIONAL_REFERENCE_ID"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
#
<!-- OPTIONAL (MULTIPLE) METADATA -->
#
<!-- OR -->
#
<!-- TBD OPTIONAL (MULTIPLE) COMMON TIME ELEMENTS AND
OPTIONAL (MULTIPLE) DATUM ELEMENTS-->
#
<!-- OR -->
#
<!-- TBD OPTIONAL (MULTIPLE) DATUM ELEMENTS -->
#
<!-- OR -->
#
<!-- OPTIONAL (MULTIPLE) KEY ELEMENTS -->
#
<!-- OR -->
#
<!-- ANY OPTIONAL (MULTIPLE) ELEMENT IN ANY NAMESPACE -->
#
</nmwg:data>
#
##

PingData =
element nmwg:data {

Identifier &
MetadataIdentifierRef? &
(

(
Metadata* |
PingMetadata*

) |
(

PingCommonTime+ &
(

PingDatum* |
ResultDatum*

)
) |
(

PingDatum* |
ResultDatum*

) |
Key*

)
}

##
CommonTime
##

PingCommonTime =
element nmwg:commonTime {

Type &
(

TimeStamp |
(

StartTime &
(

nm-wg@ogf.org 31

GWD-R March 16, 2010
EndTime |
Duration

)
)

) &
(

PingDatum* |
ResultDatum*

)
}

##
These are the basic elements we would expect to see in the
specific ping datum.
#
Example:
#
<ping:datum value="REQUIRED_VALUE"
valueUnits="OPTIONAL_VALUE_UNITS"
numBytes="OPTIONAL_NUM_BYTES"
numBytesUnits="OPTIONAL_NUM_BYTES_UNITS"
seqNum="OPTIONAL_SEQ_NUM"
ttl="OPTIONAL_TTL"
timeType="OPTIONAL_TIME_TYPE"
timeValue="OPTIONAL_TIME_VALUE"
xmlns:nmwg="http://ggf.org/ns/nmwg/tools/ping/2.0/">
#
<!-- TIME ELEMENT (IF ATTRIBUTES NOT USED) -->
#
</ping:datum>
#
##

PingDatum =
element ping:datum {

attribute value { xsd:float } &
attribute valueUnits { xsd:string }? &
attribute numBytes { xsd:int }? &
attribute numBytesUnits { xsd:string }? &
attribute seqNum { xsd:int }? &
attribute ttl { xsd:int }? &
(

(
attribute timeType { xsd:string } &
attribute timeValue { xsd:string }

) |
Time

)?
}

End Schema

8.2 Instance document for ping

<!-- Begin XML -->

<?xml version="1.0" encoding="UTF-8"?>
<nmwg:message type="store"

xmlns="http://ggf.org/ns/nmwg/base/2.0/"
xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"
xmlns:ping="http://ggf.org/ns/nmwg/tools/ping/2.0/"
xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/"
xmlns:nmtm="http://ggf.org/ns/nmwg/time/2.0/"
xmlns:nmtl4="http://ggf.org/ns/nmwg/topology/l4/3.0/"
xmlns:nmtl3="http://ggf.org/ns/nmwg/topology/l3/3.0/"
xmlns:select="http://ggf.org/ns/nmwg/ops/select/2.0/"
xmlns:average="http://ggf.org/ns/nmwg/ops/average/2.0/"
xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/">

<!-- Metadata using original topology schema -->

<nmwg:metadata id="pingmeta1">
<ping:subject id="pingsub1">
<nmwgt:endPointPair>

<nmwgt:src type="hostname" value="dreadnought.cis.udel.edu" port="4543"/>
<nmwgt:dst type="hostname" value="alderaan.cse.psu.edu" port="34343"/>

</nmwgt:endPointPair>
</ping:subject>
<ping:parameters id="pingparam1">
<nmwg:parameter name="count">2</nmwg:parameter>
<nmwg:parameter name="interval">3</nmwg:parameter>

nm-wg@ogf.org 32

GWD-R March 16, 2010
<nmwg:parameter name="deadline">10</nmwg:parameter>

</ping:parameters>
</nmwg:metadata>

<!-- Metadata(s) using new topology schema -->

<nmwg:metadata id="pingmeta2">
<ping:subject id="pingsub2">
<nmtl4:endPointPair>

<nmtl4:endPoint role="src" port="4543" protocol="icpm">
<nmtl4:address value="dreadnought.cis.udel.edu" type="hostname"/>

</nmtl4:endPoint>
<nmtl4:endPoint role="dst" port="34343" protocol="icpm">

<nmtl4:address value="alderaan.cse.psu.edu" type="hostname"/>
</nmtl4:endPoint>

</nmtl4:endPointPair>
</ping:subject>
<ping:parameters id="pingparam2">
<nmwg:parameter name="count">2</nmwg:parameter>
<nmwg:parameter name="interval">3</nmwg:parameter>
<nmwg:parameter name="deadline">10</nmwg:parameter>

</ping:parameters>
</nmwg:metadata>

<nmwg:metadata id="pingmeta3">
<ping:subject id="pingsub3">
<nmtl4:endPointPair>

<nmtl4:endPoint role="src" port="4543" protocol="icpm">
<nmtl3:interface id="d1">

<nmtl3:ipAddress value="128.4.133.200" type="ipv4"/>
<nmtl3:netmask>255.255.255.0</nmtl3:netmask>
<nmtl3:ifName>eth0</nmtl3:ifName>
<nmtl3:ifDescription>External Connection</nmtl3:ifDescription>
<nmtl3:ifAddress value="128.4.133.200" type="ipv4"/>
<nmtl3:ifHostName>dreadnought.cis.udel.edu</nmtl3:ifHostName>
<nmtl3:ifIndex>0</nmtl3:ifIndex>
<nmtl3:type>1000BaseT Ethernet</nmtl3:type>
<nmtl3:capacity>1000000000</nmtl3:capacity>

</nmtl3:interface>
</nmtl4:endPoint>
<nmtl4:endPoint role="dst" port="34343" protocol="icpm">

<nmtl3:interface id="a1">
<nmtl3:ipAddress value="130.203.16.20" type="ipv4"/>
<nmtl3:netmask>255.255.255.0</nmtl3:netmask>
<nmtl3:ifName>eth0</nmtl3:ifName>
<nmtl3:ifDescription>External Connection</nmtl3:ifDescription>
<nmtl3:ifAddress value="130.203.16.20" type="ipv4"/>
<nmtl3:ifHostName>alderaan.cse.psu.edu</nmtl3:ifHostName>
<nmtl3:ifIndex>0</nmtl3:ifIndex>
<nmtl3:type>1000BaseT Ethernet</nmtl3:type>
<nmtl3:capacity>1000000000</nmtl3:capacity>

</nmtl3:interface>
</nmtl4:endPoint>

</nmtl4:endPointPair>
</ping:subject>
<ping:parameters id="pingparam3">
<nmwg:parameter name="count">2</nmwg:parameter>
<nmwg:parameter name="interval">3</nmwg:parameter>
<nmwg:parameter name="deadline">10</nmwg:parameter>

</ping:parameters>
</nmwg:metadata>

<!-- metadata(s) with operation metadata -->

<nmwg:metadata id="pingmeta4">
<ping:subject id="pingsub4">
<nmwgt:endPointPair>

<nmwgt:src type="hostname" value="dreadnought.cis.udel.edu" port="4543"/>
<nmwgt:dst type="hostname" value="alderaan.cse.psu.edu" port="34343"/>

</nmwgt:endPointPair>
</ping:subject>
<ping:parameters id="pingparam4">
<nmwg:parameter name="count">2</nmwg:parameter>
<nmwg:parameter name="interval">3</nmwg:parameter>
<nmwg:parameter name="deadline">10</nmwg:parameter>

</ping:parameters>
</nmwg:metadata>

<nmwg:metadata id="pingmeta5">
<select:subject id="pingsub5" metadataIdRef="pingmeta4" />
<select:parameters id="pingparam5">
<nmwg:parameter name="timeValue">

<nmwg:parameter name="greaterThan">1107492199</nmwg:parameter>
</nmwg:parameter>

</select:parameters>
</nmwg:metadata>

nm-wg@ogf.org 33

GWD-R March 16, 2010
<nmwg:metadata id="pingmeta6">

<select:subject id="pingsub6" metadataIdRef="pingmeta5" />
<select:parameters id="pingparam6">
<nmwg:parameter name="timeValue">

<nmwg:parameter name="lessThan">1107492207</nmwg:parameter>
</nmwg:parameter>

</select:parameters>
</nmwg:metadata>

<nmwg:metadata id="pingmeta7">
<average:subject id="pingsub7" metadataIdRef="pingmeta6" />
<average:parameters id="pingparam7">
<nmwg:parameter name="value" />

</average:parameters>
</nmwg:metadata>

<!-- Data block, with a time block, with multiple datum blocks -->
<nmwg:data id="data1" metadataIdRef="pingmeta1">

<nmwg:commonTime type="unix" value="1107492095">
<ping:datum seqNum="0" value="19.1" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="1" value="19.2" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />

</nmwg:commonTime>
</nmwg:data>

<!-- Data block, with a time block, with multiple datum blocks (other way to show time) -->
<nmwg:data id="data2" metadataIdRef="pingmeta1">

<nmwg:commonTime type="unix">
<nmtm:value>1107492096</nmtm:value>
<ping:datum seqNum="0" value="19.3" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="1" value="19.4" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />

</nmwg:commonTime>
</nmwg:data>

<!-- Data block, with a time block (range), with multiple datum blocks -->
<nmwg:data id="data3" metadataIdRef="pingmeta1">

<nmwg:commonTime type="range">
<nmtm:start type="unix" value="1107492097"/>
<nmtm:end type="unix" value="1107492395"/>
<ping:datum seqNum="0" value="19.2" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="1" value="17.3" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="3" value="45.4" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="88" value="21.9" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />

</nmwg:commonTime>
</nmwg:data>

<!-- Data block, with a time block (durration), with multiple datum blocks -->
<nmwg:data id="data4" metadataIdRef="pingmeta1">

<nmwg:commonTime type="durration" duration="300">
<nmtm:start type="unix" value="1107492097"/>
<ping:datum seqNum="0" value="19.2" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="1" value="17.3" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="3" value="45.4" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />
<ping:datum seqNum="88" value="21.9" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" />

</nmwg:commonTime>
</nmwg:data>

<!-- data with datum blocks, time is inline (two ways to represent time) -->
<nmwg:data id="data5" metadataIdRef="pingmeta1">

<ping:datum seqNum="0" value="14.3" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" timeType="unix" timeValue="1107492199" />
<ping:datum seqNum="1" value="17.4" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes" timeType="unix" timeValue="1107492201" />

</nmwg:data>

<!-- data with datum blocks, time is a sub element -->
<nmwg:data id="data6" metadataIdRef="pingmeta1">

<ping:datum seqNum="0" value="19.6" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="unix" value="1107493095" />

</ping:datum>
<ping:datum seqNum="0" value="18.5" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="unix" value="1107493095" />

</ping:datum>
</nmwg:data>

<!-- data with datum blocks, time is a sub element -->
<nmwg:data id="data7" metadataIdRef="pingmeta1">

<ping:datum seqNum="0" value="19.6" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="unix">

<nmtm:value>1107493095</nmtm:value>
</nmtm:time>

</ping:datum>
<ping:datum seqNum="0" value="18.5" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="unix">

<nmtm:value>1107493095</nmtm:value>
</nmtm:time>

</ping:datum>
</nmwg:data>

<!-- data with datum blocks, time is a sub element (other way to show time) -->

nm-wg@ogf.org 34

GWD-R March 16, 2010
<nmwg:data id="data8" metadataIdRef="pingmeta1">

<ping:datum seqNum="0" value="19.6" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="range">

<nmtm:start type="unix" value="1107492095"/>
<nmtm:end type="unix" value="1107492395"/>

</nmtm:time>
</ping:datum>
<ping:datum seqNum="0" value="18.5" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="range">

<nmtm:start type="unix" value="1107492095"/>
<nmtm:end type="unix" value="1107492395"/>

</nmtm:time>
</ping:datum>

</nmwg:data>

<nmwg:data id="data9" metadataIdRef="pingmeta1">
<ping:datum seqNum="0" value="19.6" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="durration" duration="300">

<nmtm:start type="unix" value="1107492095"/>
</nmtm:time>

</ping:datum>
<ping:datum seqNum="0" value="18.5" valueUnits="ms" ttl="241" numBytes="64" numBytesUnits="bytes">
<nmtm:time type="durration" duration="300">

<nmtm:start type="unix" value="1107492095"/>
</nmtm:time>

</ping:datum>
</nmwg:data>

<!-- result datum elements -->
<nmwg:data id="data10" metadataIdRef="pingmeta1">

<nmwgr:datum type="error.ping.mp">From lager (192.168.0.200) icmp_seq=1 Destination Host Unreachable</nmwgr:datum>
</nmwg:data>

</nmwg:message>

<!-- End XML -->

9 Notational Conventions

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119
[1]

10 Security Considerations

There are important security concerns associated with the generation and distribution of network measure-
ment information. For example, ISPs frequently consider network configuration and performance infor-
mation to be proprietary. Furthermore, observing traffic, and, in particular, collecting packet headers, is
frequently considered a violation of the presumption of privacy on the network. Systems that collect the
measurements described here are sometimes regarded as invasive, and, indeed, poorly designed or con-
figured monitoring tools can consume a disproportionate amount of network bandwidth. Port blocking,
protocol blocking, and traffic shaping can impact many measurement tools. Tools, such as traceroute, that
send UDP probes to increasing port numbers can appear to be port scans and raise security alerts.

We do not address those concerns in this document, but implementers are encouraged to consider the
security implications of generating and distributing measurement information. While distribution of end-
to-end application-level measurements is generally accepted, measurements that identify individual users or
consume noticeable amounts of resources should be taken carefully, and the distribution of information to
other sites that cannot be obtained readily by other users at those sites should be considered carefully.

nm-wg@ogf.org 35

GWD-R March 16, 2010

11 Contributors

D. Martin Swany
University of Delaware
Department of Computer and Information Sciences
Newark, DE 19716

12 Acknowledgements

We gratefully acknowledge the contributions of: Jeff Boote, Eric Boyd, Mark Leese, Dan Gunter, Richard
Hughes-Jones, Jason Zurawski and the other members of the Network Measurements Working Group.

13 Glossary

...

14 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification
can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

15 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

16 Full Copyright Notice

Copyright c© Open Grid Forum (2007-2010). All Rights Reserved.

nm-wg@ogf.org 36

GWD-R March 16, 2010
This document and translations of it may be copied and furnished to others, and derivative works that com-
ment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the OGF or other
organizations, except as needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed, or as required to trans-
late it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

References

[1] S. Bradner. Key Words for Use in RFCs to Indicate Requirement Levels. RFC 2119, March 1997.

[2] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann, and M. Swany. A Hierarchy
of Network Performance Characteristics for Grid Applications and Services. Community practice,
Global Grid Forum, June 2003. http://nmwg.internet2.edu.

[3] A. Anjomshoaa M. Drescher. Standardised Namespaces for XML infosets in OGF. Open grid forum
community document, Open Grid Forum, October 2006.

[4] Sun Multi-Schema XML Validator (MSV).https://msv.dev.java.net/.

[5] Network Markup Language Working Group (NML-WG).https://forge.gridforum.org/
projects/nml-wg.

[6] OSI Protocol Model.http://en.wikipedia.org/wiki/OSI_model.

[7] RELAX-NG Schema Language.http://relaxng.org/.

[8] Multi-format schema converter based on RELAX NG.http://www.thaiopensource.com/
relaxng/trang.html.

[9] XML Schema).http://www.w3.org/XML/Schema.

[10] J. Zurawski, M. Swany, and D. Gunter. A scalable framework for representation and exchange of
network measurements. InIEEE/Create-Net Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities, Barcelona, Spain, March 2006.

nm-wg@ogf.org 37

NM-WG/perfSONAR
Topology Schema

Martin Swany

Topology Schema
• Topology schema grew from network measurement

schema from the NM-WG in the OGF (the basis of
perfSONAR)

• Reusable “Subject” elements for common cases
• Also reduces redundancy

• Relationships between measurement Subjects
• Same basic structure at all layers

• Networks are graphs
• Key elements:

• Node
• Port (renamed from Interface)
• Link
• Network
• Path
• Relation

• New element replacing ID/IDREF structure

Topology

Topology - Recursive Links

Version 3 Topology Schema
• Structured by layers and the same elements recurring

there
• Varied by namespaces

• Reuse visualization logic, etc.
• Validate layer- or technology-specific attributes

• 4 Layers: Base (both abstract and L1), L2, L3, L4

<?xml version="1.0" encoding="UTF-8"?>
<nmwg:store xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/"

xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/20070828/"
xmlns:nmwgtl3="http://ggf.org/ns/nmwg/topology/l3/20070828/"
xmlns:nmwgtl2="http://ggf.org/ns/nmwg/topology/l2/20070828/">

Hierarchy of Namespaces
• Recent work
• Use technology-specific namespaces

• http://ogf.org/ns/nmwg/topology/l2/sonet/20070828/
• http://ogf.org/ns/nmwg/topology/l2/sdh/20070828/
• http://ogf.org/ns/nmwg/topology/l2/ethernet/20070828/
• http://ogf.org/ns/nmwg/topology/l3/ipv4/20070828/
• http://ogf.org/ns/nmwg/topology/l3/ipv6/20070828/

Relationships between Elements
• Elements at the same layer have relationships

• A layer2 link is related to its layer2 interface
• Elements of the same sort have relationships between

themselves at different layers
• A Layer 1 Interface (physical NIC) can have one or more Layer 2

Interfaces, which can each have one or more Layer 3 Interfaces
• Node is special

• Since a Node doesn’t really have any higher-layer characteristic
independent of its Interfaces

Relationships between Elements
• Recursive definition of links

• Logical links consist of physical links
• A path is an ordered list of elements

• Can be similar to above but we need to
introduce an Index attribute

• Networks
• Physically consist of links but that is not

always the most convenient logical view
• Special element to which Domains, Nodes,

Interfaces or Links belong

Current Status
• Document for Version 3/3+ schema is (nearly)

ready
• The Network Markup Language WG (NML-WG)

in the OGF should take up this effort
• The topology schema has been extended to

support topology exchange and pathfinding
• The Internet2, GEANT2 and Esnet are using this

schema
• Ideally, this facilitates a close tie between dynamic

services and monitoring
• Unification of monitoring and control schemata

Network Element Identifiers

• A scheme for identifying network
elements

• Each network element gets a unique
identifier

• This identifier will be included with any
measurement associated with that
element.

Network Element Identifiers

• Use Case:
• A client would use a topology service to look

up the identifier for a network element and
then would query a lookup service using the
identifier to find the measurements
associated with that element.

Network Element Identifiers

• Identifiers use URN notation
• Prefixed with “urn:ogf:network:”
• Consists of name/value pairs separated by

colons
• Possible field names: domain, node, port,

link, path, network
• Set of rules defined for each field to keep

identifiers compact and finite

Network Element Identifiers

• Examples
• urn:ogf:network:domain=Internet2.edu
• urn:ogf:network:domain=internet2.edu:node=packrat
• urn:ogf:network:domain=internet2.edu:node=rtr.seat:port=so-

2%2F1%2F0.16
• urn:ogf:network:domain=internet2.edu:node=rtr.seat:port=198.3

2.8.200
• urn:ogf:network:domain=Internet2.edu:node=packrat:port=eth0:l

ink=1
• urn:ogf:network:domain=internet2.edu:link=WASH to ATLA

OC192
• urn:ogf:network:path=anna-11537-176

Network Element Identifiers

• Current Users
• DICE Control Plane groups
• perfSONAR

Topology Service

• Provides a queryable repository for
obtaining topology information about a
domain
• Can obtain the entire network
• Xquery interface allows the construction of

arbitrarily complex queries about the network

Topology Service

• Current Deployments
• Internet2 Link Status (part of the GEANT2

E2E-MON
• Planned Deployments

• Internet2 DCN
• SLAC (PingER Topology Information)

Link Status Measurement Archive

• Provide access to up/down status information about layer2
links

• Data stored in a SQL database
• Database schema allows for storing time ranges during which a

link had a certain status
• Minimizes storage costs for rarely changing links

• Collector
• Can use SNMP, Scripts or simply Constants
• Can store results directly into a database or into a remote

Measurement Archive
• Links identified by their “network element identifier”

Link Status Measurement Archive

• Current Deployment
• Internet2 Network
• HOPI (in2p3 circuit)

• Planned Deployment
• SLAC

Circuit Status Measurement Archive

• An e2emon-compatible service
• Integrates with the Link Status MA to provide the

information stored in MAs
• Can work with local MAs directly or with remote MAs

• Can use the Topology service to obtain necessary
information about nodes

• Can use a Lookup Service to lookup the MA containing
information on each link

Circuit Status Measurement Archive

• Current Deployment
• Internet2 Network
• HOPI (in2p3 circuit)

• Planned Deployment
• SLAC

perfSONAR-UI Plugin

• Obtains Topology information from a
Topology service and graphs it

• Looks up the Link Status MA for each link
from the Lookup Service using the link
identifiers

• Obtains the status of each link
• Graphs the Topology and colors each link

depending on its status

NML-WG
• Extensible namespace-based ontology

rendered in a neutral format
• This could allow short-term rendering into

both NDL and NMWG “styles”
• We have worked on translations between

from NDL to NMWG
• Interesting proof of concept

• In some sense, making that easy and
unambiguous is a good first step

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1
2
3
4
5
6
7 Network Working Group M. Eisler, Ed.
8 Request for Comments: 4506 Network Appliance, Inc.
9 STD: 67 May 2006
10 Obsoletes: 1832
11 Category: Standards Track
12
13
14 XDR: External Data Representation Standard
15
16 Status of This Memo
17
18 This document specifies an Internet standards track protocol for the
19 Internet community, and requests discussion and suggestions for
20 improvements. Please refer to the current edition of the "Internet
21 Official Protocol Standards" (STD 1) for the standardization state
22 and status of this protocol. Distribution of this memo is unlimited.
23
24 Copyright Notice
25
26 Copyright (C) The Internet Society (2006).
27
28 Abstract
29
30 This document describes the External Data Representation Standard
31 (XDR) protocol as it is currently deployed and accepted. This
32 document obsoletes RFC 1832.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

-1-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

55
56
57
58 Eisler Standards Track [Page 1]
59 FF
60 RFC 4506 XDR: External Data Representation Standard May 2006
61
62
63 Table of Contents
64
65 1. Introduction ..3
66 2. Changes from RFC 1832 ...3
67 3. Basic Block Size ..3
68 4. XDR Data Types ..4
69 4.1. Integer ..4
70 4.2. Unsigned Integer ...4
71 4.3. Enumeration ..5
72 4.4. Boolean ..5
73 4.5. Hyper Integer and Unsigned Hyper Integer5
74 4.6. Floating-Point ...6
75 4.7. Double-Precision Floating-Point7
76 4.8. Quadruple-Precision Floating-Point8
77 4.9. Fixed-Length Opaque Data9
78 4.10. Variable-Length Opaque Data9
79 4.11. String ...10
80 4.12. Fixed-Length Array11
81 4.13. Variable-Length Array11
82 4.14. Structure ..12
83 4.15. Discriminated Union12
84 4.16. Void ...13
85 4.17. Constant ...13
86 4.18. Typedef ..13
87 4.19. Optional-Data ..14
88 4.20. Areas for Future Enhancement16
89 5. Discussion ...16
90 6. The XDR Language Specification17
91 6.1. Notational Conventions17
92 6.2. Lexical Notes ...18
93 6.3. Syntax Information ..18
94 6.4. Syntax Notes ..20
95 7. An Example of an XDR Data Description21
96 8. Security Considerations ..22
97 9. IANA Considerations ..23
98 10. Trademarks and Owners ...23
99 11. ANSI/IEEE Standard 754-198524
100 12. Normative References ..25
101 13. Informative References ..25
102 14. Acknowledgements ..26
103
104
105
106
107
108

-2-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

109
110
111
112
113
114 Eisler Standards Track [Page 2]
115 FF
116 RFC 4506 XDR: External Data Representation Standard May 2006
117
118
119 1. Introduction
120
121 XDR is a standard for the description and encoding of data. It is
122 useful for transferring data between different computer
123 architectures, and it has been used to communicate data between such
124 diverse machines as the SUN WORKSTATION*, VAX*, IBM-PC*, and Cray*.
125 XDR fits into the ISO presentation layer and is roughly analogous in
126 purpose to X.409, ISO Abstract Syntax Notation. The major difference
127 between these two is that XDR uses implicit typing, while X.409 uses
128 explicit typing.
129
130 XDR uses a language to describe data formats. The language can be
131 used only to describe data; it is not a programming language. This
132 language allows one to describe intricate data formats in a concise
133 manner. The alternative of using graphical representations (itself
134 an informal language) quickly becomes incomprehensible when faced
135 with complexity. The XDR language itself is similar to the C
136 language [KERN], just as Courier [COUR] is similar to Mesa.
137 Protocols such as ONC RPC (Remote Procedure Call) and the NFS*
138 (Network File System) use XDR to describe the format of their data.
139
140 The XDR standard makes the following assumption: that bytes (or
141 octets) are portable, where a byte is defined as 8 bits of data. A
142 given hardware device should encode the bytes onto the various media
143 in such a way that other hardware devices may decode the bytes
144 without loss of meaning. For example, the Ethernet* standard
145 suggests that bytes be encoded in "little-endian" style [COHE], or
146 least significant bit first.
147
148 2. Changes from RFC 1832
149
150 This document makes no technical changes to RFC 1832 and is published
151 for the purposes of noting IANA considerations, augmenting security
152 considerations, and distinguishing normative from informative
153 references.
154
155 3. Basic Block Size
156
157 The representation of all items requires a multiple of four bytes (or
158 32 bits) of data. The bytes are numbered 0 through n-1. The bytes
159 are read or written to some byte stream such that byte m always
160 precedes byte m+1. If the n bytes needed to contain the data are not
161 a multiple of four, then the n bytes are followed by enough (0 to 3)
162 residual zero bytes, r, to make the total byte count a multiple of 4.

-3-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

163
164 We include the familiar graphic box notation for illustration and
165 comparison. In most illustrations, each box (delimited by a plus
166 sign at the 4 corners and vertical bars and dashes) depicts a byte.
167
168
169
170 Eisler Standards Track [Page 3]
171 FF
172 RFC 4506 XDR: External Data Representation Standard May 2006
173
174
175 Ellipses (...) between boxes show zero or more additional bytes where
176 required.
177
178 +--------+--------+...+--------+--------+...+--------+
179 | byte 0 | byte 1 |...|byte n-1| 0 |...| 0 | BLOCK
180 +--------+--------+...+--------+--------+...+--------+
181 |<-----------n bytes---------->|<------r bytes------>|
182 |<-----------n+r (where (n+r) mod 4 = 0)>----------->|
183
184 4. XDR Data Types
185
186 Each of the sections that follow describes a data type defined in the
187 XDR standard, shows how it is declared in the language, and includes
188 a graphic illustration of its encoding.
189
190 For each data type in the language we show a general paradigm
191 declaration. Note that angle brackets (< and >) denote variable-
192 length sequences of data and that square brackets ([and]) denote
193 fixed-length sequences of data. "n", "m", and "r" denote integers.
194 For the full language specification and more formal definitions of
195 terms such as "identifier" and "declaration", refer to Section 6,
196 "The XDR Language Specification".
197
198 For some data types, more specific examples are included. A more
199 extensive example of a data description is in Section 7, "An Example
200 of an XDR Data Description".
201
202 4.1. Integer
203
204 An XDR signed integer is a 32-bit datum that encodes an integer in
205 the range [-2147483648,2147483647]. The integer is represented in
206 two's complement notation. The most and least significant bytes are
207 0 and 3, respectively. Integers are declared as follows:
208
209 int identifier;
210
211 (MSB) (LSB)
212 +-------+-------+-------+-------+
213 |byte 0 |byte 1 |byte 2 |byte 3 | INTEGER
214 +-------+-------+-------+-------+
215 <------------32 bits------------>
216

-4-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

217 4.2. Unsigned Integer
218
219 An XDR unsigned integer is a 32-bit datum that encodes a non-negative
220 integer in the range [0,4294967295]. It is represented by an
221 unsigned binary number whose most and least significant bytes are 0
222 and 3, respectively. An unsigned integer is declared as follows:
223
224
225
226 Eisler Standards Track [Page 4]
227 FF
228 RFC 4506 XDR: External Data Representation Standard May 2006
229
230
231 unsigned int identifier;
232
233 (MSB) (LSB)
234 +-------+-------+-------+-------+
235 |byte 0 |byte 1 |byte 2 |byte 3 | UNSIGNED INTEGER
236 +-------+-------+-------+-------+
237 <------------32 bits------------>
238
239 4.3. Enumeration
240
241 Enumerations have the same representation as signed integers.
242 Enumerations are handy for describing subsets of the integers.
243 Enumerated data is declared as follows:
244
245 enum { name-identifier = constant, ... } identifier;
246
247 For example, the three colors red, yellow, and blue could be
248 described by an enumerated type:
249
250 enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;
251
252 It is an error to encode as an enum any integer other than those that
253 have been given assignments in the enum declaration.
254
255 4.4. Boolean
256
257 Booleans are important enough and occur frequently enough to warrant
258 their own explicit type in the standard. Booleans are declared as
259 follows:
260
261 bool identifier;
262
263 This is equivalent to:
264
265 enum { FALSE = 0, TRUE = 1 } identifier;
266
267 4.5. Hyper Integer and Unsigned Hyper Integer
268
269 The standard also defines 64-bit (8-byte) numbers called hyper
270 integers and unsigned hyper integers. Their representations are the

-5-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

271 obvious extensions of integer and unsigned integer defined above.
272 They are represented in two's complement notation. The most and
273 least significant bytes are 0 and 7, respectively. Their
274 declarations:
275
276 hyper identifier; unsigned hyper identifier;
277
278
279
280
281
282 Eisler Standards Track [Page 5]
283 FF
284 RFC 4506 XDR: External Data Representation Standard May 2006
285
286
287 (MSB) (LSB)
288 +-------+-------+-------+-------+-------+-------+-------+-------+
289 |byte 0 |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
290 +-------+-------+-------+-------+-------+-------+-------+-------+
291 <----------------------------64 bits---------------------------->
292 HYPER INTEGER
293 UNSIGNED HYPER INTEGER
294
295 4.6. Floating-Point
296
297 The standard defines the floating-point data type "float" (32 bits or
298 4 bytes). The encoding used is the IEEE standard for normalized
299 single-precision floating-point numbers [IEEE]. The following three
300 fields describe the single-precision floating-point number:
301
302 S: The sign of the number. Values 0 and 1 represent positive and
303 negative, respectively. One bit.
304
305 E: The exponent of the number, base 2. 8 bits are devoted to this
306 field. The exponent is biased by 127.
307
308 F: The fractional part of the number's mantissa, base 2. 23 bits
309 are devoted to this field.
310
311 Therefore, the floating-point number is described by:
312
313 (-1)**S * 2**(E-Bias) * 1.F
314
315 It is declared as follows:
316
317 float identifier;
318
319 +-------+-------+-------+-------+
320 |byte 0 |byte 1 |byte 2 |byte 3 | SINGLE-PRECISION
321 S| E | F | FLOATING-POINT NUMBER
322 +-------+-------+-------+-------+
323 1|<- 8 ->|<-------23 bits------>|
324 <------------32 bits------------>

-6-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

325
326 Just as the most and least significant bytes of a number are 0 and 3,
327 the most and least significant bits of a single-precision floating-
328 point number are 0 and 31. The beginning bit (and most significant
329 bit) offsets of S, E, and F are 0, 1, and 9, respectively. Note that
330 these numbers refer to the mathematical positions of the bits, and
331 NOT to their actual physical locations (which vary from medium to
332 medium).
333
334
335
336
337
338 Eisler Standards Track [Page 6]
339 FF
340 RFC 4506 XDR: External Data Representation Standard May 2006
341
342
343 The IEEE specifications should be consulted concerning the encoding
344 for signed zero, signed infinity (overflow), and denormalized numbers
345 (underflow) [IEEE]. According to IEEE specifications, the "NaN" (not
346 a number) is system dependent and should not be interpreted within
347 XDR as anything other than "NaN".
348
349 4.7. Double-Precision Floating-Point
350
351 The standard defines the encoding for the double-precision floating-
352 point data type "double" (64 bits or 8 bytes). The encoding used is
353 the IEEE standard for normalized double-precision floating-point
354 numbers [IEEE]. The standard encodes the following three fields,
355 which describe the double-precision floating-point number:
356
357 S: The sign of the number. Values 0 and 1 represent positive and
358 negative, respectively. One bit.
359
360 E: The exponent of the number, base 2. 11 bits are devoted to
361 this field. The exponent is biased by 1023.
362
363 F: The fractional part of the number's mantissa, base 2. 52 bits
364 are devoted to this field.
365
366 Therefore, the floating-point number is described by:
367
368 (-1)**S * 2**(E-Bias) * 1.F
369
370 It is declared as follows:
371
372 double identifier;
373
374 +------+------+------+------+------+------+------+------+
375 |byte 0|byte 1|byte 2|byte 3|byte 4|byte 5|byte 6|byte 7|
376 S| E | F |
377 +------+------+------+------+------+------+------+------+
378 1|<--11-->|<-----------------52 bits------------------->|

-7-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

379 <-----------------------64 bits------------------------->
380 DOUBLE-PRECISION FLOATING-POINT
381
382 Just as the most and least significant bytes of a number are 0 and 3,
383 the most and least significant bits of a double-precision floating-
384 point number are 0 and 63. The beginning bit (and most significant
385 bit) offsets of S, E, and F are 0, 1, and 12, respectively. Note
386 that these numbers refer to the mathematical positions of the bits,
387 and NOT to their actual physical locations (which vary from medium to
388 medium).
389
390
391
392
393
394 Eisler Standards Track [Page 7]
395 FF
396 RFC 4506 XDR: External Data Representation Standard May 2006
397
398
399 The IEEE specifications should be consulted concerning the encoding
400 for signed zero, signed infinity (overflow), and denormalized numbers
401 (underflow) [IEEE]. According to IEEE specifications, the "NaN" (not
402 a number) is system dependent and should not be interpreted within
403 XDR as anything other than "NaN".
404
405 4.8. Quadruple-Precision Floating-Point
406
407 The standard defines the encoding for the quadruple-precision
408 floating-point data type "quadruple" (128 bits or 16 bytes). The
409 encoding used is designed to be a simple analog of the encoding used
410 for single- and double-precision floating-point numbers using one
411 form of IEEE double extended precision. The standard encodes the
412 following three fields, which describe the quadruple-precision
413 floating-point number:
414
415 S: The sign of the number. Values 0 and 1 represent positive and
416 negative, respectively. One bit.
417
418 E: The exponent of the number, base 2. 15 bits are devoted to
419 this field. The exponent is biased by 16383.
420
421 F: The fractional part of the number's mantissa, base 2. 112 bits
422 are devoted to this field.
423
424 Therefore, the floating-point number is described by:
425
426 (-1)**S * 2**(E-Bias) * 1.F
427
428 It is declared as follows:
429
430 quadruple identifier;
431
432 +------+------+------+------+------+------+-...--+------+

-8-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

433 |byte 0|byte 1|byte 2|byte 3|byte 4|byte 5| ... |byte15|
434 S| E | F |
435 +------+------+------+------+------+------+-...--+------+
436 1|<----15---->|<-------------112 bits------------------>|
437 <-----------------------128 bits------------------------>
438 QUADRUPLE-PRECISION FLOATING-POINT
439
440 Just as the most and least significant bytes of a number are 0 and 3,
441 the most and least significant bits of a quadruple-precision
442 floating-point number are 0 and 127. The beginning bit (and most
443 significant bit) offsets of S, E , and F are 0, 1, and 16,
444 respectively. Note that these numbers refer to the mathematical
445 positions of the bits, and NOT to their actual physical locations
446 (which vary from medium to medium).
447
448
449
450 Eisler Standards Track [Page 8]
451 FF
452 RFC 4506 XDR: External Data Representation Standard May 2006
453
454
455 The encoding for signed zero, signed infinity (overflow), and
456 denormalized numbers are analogs of the corresponding encodings for
457 single and double-precision floating-point numbers [SPAR], [HPRE].
458 The "NaN" encoding as it applies to quadruple-precision floating-
459 point numbers is system dependent and should not be interpreted
460 within XDR as anything other than "NaN".
461
462 4.9. Fixed-Length Opaque Data
463
464 At times, fixed-length uninterpreted data needs to be passed among
465 machines. This data is called "opaque" and is declared as follows:
466
467 opaque identifier[n];
468
469 where the constant n is the (static) number of bytes necessary to
470 contain the opaque data. If n is not a multiple of four, then the n
471 bytes are followed by enough (0 to 3) residual zero bytes, r, to make
472 the total byte count of the opaque object a multiple of four.
473
474 0 1 ...
475 +--------+--------+...+--------+--------+...+--------+
476 | byte 0 | byte 1 |...|byte n-1| 0 |...| 0 |
477 +--------+--------+...+--------+--------+...+--------+
478 |<-----------n bytes---------->|<------r bytes------>|
479 |<-----------n+r (where (n+r) mod 4 = 0)------------>|
480 FIXED-LENGTH OPAQUE
481
482 4.10. Variable-Length Opaque Data
483
484 The standard also provides for variable-length (counted) opaque data,
485 defined as a sequence of n (numbered 0 through n-1) arbitrary bytes
486 to be the number n encoded as an unsigned integer (as described

-9-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

487 below), and followed by the n bytes of the sequence.
488
489 Byte m of the sequence always precedes byte m+1 of the sequence, and
490 byte 0 of the sequence always follows the sequence's length (count).
491 If n is not a multiple of four, then the n bytes are followed by
492 enough (0 to 3) residual zero bytes, r, to make the total byte count
493 a multiple of four. Variable-length opaque data is declared in the
494 following way:
495
496 opaque identifier<m>;
497 or
498 opaque identifier<>;
499
500 The constant m denotes an upper bound of the number of bytes that the
501 sequence may contain. If m is not specified, as in the second
502 declaration, it is assumed to be (2**32) - 1, the maximum length.
503
504
505
506 Eisler Standards Track [Page 9]
507 FF
508 RFC 4506 XDR: External Data Representation Standard May 2006
509
510
511 The constant m would normally be found in a protocol specification.
512 For example, a filing protocol may state that the maximum data
513 transfer size is 8192 bytes, as follows:
514
515 opaque filedata<8192>;
516
517 0 1 2 3 4 5 ...
518 +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
519 | length n |byte0|byte1|...| n-1 | 0 |...| 0 |
520 +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
521 |<-------4 bytes------->|<------n bytes------>|<---r bytes--->|
522 |<----n+r (where (n+r) mod 4 = 0)---->|
523 VARIABLE-LENGTH OPAQUE
524
525 It is an error to encode a length greater than the maximum described
526 in the specification.
527
528 4.11. String
529
530 The standard defines a string of n (numbered 0 through n-1) ASCII
531 bytes to be the number n encoded as an unsigned integer (as described
532 above), and followed by the n bytes of the string. Byte m of the
533 string always precedes byte m+1 of the string, and byte 0 of the
534 string always follows the string's length. If n is not a multiple of
535 four, then the n bytes are followed by enough (0 to 3) residual zero
536 bytes, r, to make the total byte count a multiple of four. Counted
537 byte strings are declared as follows:
538
539 string object<m>;
540 or

-10-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

541 string object<>;
542
543 The constant m denotes an upper bound of the number of bytes that a
544 string may contain. If m is not specified, as in the second
545 declaration, it is assumed to be (2**32) - 1, the maximum length.
546 The constant m would normally be found in a protocol specification.
547 For example, a filing protocol may state that a file name can be no
548 longer than 255 bytes, as follows:
549
550 string filename<255>;
551
552 0 1 2 3 4 5 ...
553 +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
554 | length n |byte0|byte1|...| n-1 | 0 |...| 0 |
555 +-----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
556 |<-------4 bytes------->|<------n bytes------>|<---r bytes--->|
557 |<----n+r (where (n+r) mod 4 = 0)---->|
558 STRING
559
560
561
562 Eisler Standards Track [Page 10]
563 FF
564 RFC 4506 XDR: External Data Representation Standard May 2006
565
566
567 It is an error to encode a length greater than the maximum described
568 in the specification.
569
570 4.12. Fixed-Length Array
571
572 Declarations for fixed-length arrays of homogeneous elements are in
573 the following form:
574
575 type-name identifier[n];
576
577 Fixed-length arrays of elements numbered 0 through n-1 are encoded by
578 individually encoding the elements of the array in their natural
579 order, 0 through n-1. Each element's size is a multiple of four
580 bytes. Though all elements are of the same type, the elements may
581 have different sizes. For example, in a fixed-length array of
582 strings, all elements are of type "string", yet each element will
583 vary in its length.
584
585 +---+---+---+---+---+---+---+---+...+---+---+---+---+
586 | element 0 | element 1 |...| element n-1 |
587 +---+---+---+---+---+---+---+---+...+---+---+---+---+
588 |<--------------------n elements------------------->|
589
590 FIXED-LENGTH ARRAY
591
592 4.13. Variable-Length Array
593
594 Counted arrays provide the ability to encode variable-length arrays

-11-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

595 of homogeneous elements. The array is encoded as the element count n
596 (an unsigned integer) followed by the encoding of each of the array's
597 elements, starting with element 0 and progressing through element
598 n-1. The declaration for variable-length arrays follows this form:
599
600 type-name identifier<m>;
601 or
602 type-name identifier<>;
603
604 The constant m specifies the maximum acceptable element count of an
605 array; if m is not specified, as in the second declaration, it is
606 assumed to be (2**32) - 1.
607
608 0 1 2 3
609 +--+--+--+--+--+--+--+--+--+--+--+--+...+--+--+--+--+
610 | n | element 0 | element 1 |...|element n-1|
611 +--+--+--+--+--+--+--+--+--+--+--+--+...+--+--+--+--+
612 |<-4 bytes->|<--------------n elements------------->|
613 COUNTED ARRAY
614
615
616
617
618 Eisler Standards Track [Page 11]
619 FF
620 RFC 4506 XDR: External Data Representation Standard May 2006
621
622
623 It is an error to encode a value of n that is greater than the
624 maximum described in the specification.
625
626 4.14. Structure
627
628 Structures are declared as follows:
629
630 struct {
631 component-declaration-A;
632 component-declaration-B;
633 ...
634 } identifier;
635
636 The components of the structure are encoded in the order of their
637 declaration in the structure. Each component's size is a multiple of
638 four bytes, though the components may be different sizes.
639
640 +-------------+-------------+...
641 | component A | component B |... STRUCTURE
642 +-------------+-------------+...
643
644 4.15. Discriminated Union
645
646 A discriminated union is a type composed of a discriminant followed
647 by a type selected from a set of prearranged types according to the
648 value of the discriminant. The type of discriminant is either "int",

-12-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

649 "unsigned int", or an enumerated type, such as "bool". The component
650 types are called "arms" of the union and are preceded by the value of
651 the discriminant that implies their encoding. Discriminated unions
652 are declared as follows:
653
654 union switch (discriminant-declaration) {
655 case discriminant-value-A:
656 arm-declaration-A;
657 case discriminant-value-B:
658 arm-declaration-B;
659 ...
660 default: default-declaration;
661 } identifier;
662
663 Each "case" keyword is followed by a legal value of the discriminant.
664 The default arm is optional. If it is not specified, then a valid
665 encoding of the union cannot take on unspecified discriminant values.
666 The size of the implied arm is always a multiple of four bytes.
667
668 The discriminated union is encoded as its discriminant followed by
669 the encoding of the implied arm.
670
671
672
673
674 Eisler Standards Track [Page 12]
675 FF
676 RFC 4506 XDR: External Data Representation Standard May 2006
677
678
679 0 1 2 3
680 +---+---+---+---+---+---+---+---+
681 | discriminant | implied arm | DISCRIMINATED UNION
682 +---+---+---+---+---+---+---+---+
683 |<---4 bytes--->|
684
685 4.16. Void
686
687 An XDR void is a 0-byte quantity. Voids are useful for describing
688 operations that take no data as input or no data as output. They are
689 also useful in unions, where some arms may contain data and others do
690 not. The declaration is simply as follows:
691
692 void;
693
694 Voids are illustrated as follows:
695
696 ++
697 || VOID
698 ++
699 --><-- 0 bytes
700
701 4.17. Constant
702

-13-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

703 The data declaration for a constant follows this form:
704
705 const name-identifier = n;
706
707 "const" is used to define a symbolic name for a constant; it does not
708 declare any data. The symbolic constant may be used anywhere a
709 regular constant may be used. For example, the following defines a
710 symbolic constant DOZEN, equal to 12.
711
712 const DOZEN = 12;
713
714 4.18. Typedef
715
716 "typedef" does not declare any data either, but serves to define new
717 identifiers for declaring data. The syntax is:
718
719 typedef declaration;
720
721 The new type name is actually the variable name in the declaration
722 part of the typedef. For example, the following defines a new type
723 called "eggbox" using an existing type called "egg":
724
725 typedef egg eggbox[DOZEN];
726
727
728
729
730 Eisler Standards Track [Page 13]
731 FF
732 RFC 4506 XDR: External Data Representation Standard May 2006
733
734
735 Variables declared using the new type name have the same type as the
736 new type name would have in the typedef, if it were considered a
737 variable. For example, the following two declarations are equivalent
738 in declaring the variable "fresheggs":
739
740 eggbox fresheggs; egg fresheggs[DOZEN];
741
742 When a typedef involves a struct, enum, or union definition, there is
743 another (preferred) syntax that may be used to define the same type.
744 In general, a typedef of the following form:
745
746 typedef <<struct, union, or enum definition>> identifier;
747
748 may be converted to the alternative form by removing the "typedef"
749 part and placing the identifier after the "struct", "union", or
750 "enum" keyword, instead of at the end. For example, here are the two
751 ways to define the type "bool":
752
753 typedef enum { /* using typedef */
754 FALSE = 0,
755 TRUE = 1
756 } bool;

-14-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

757
758 enum bool { /* preferred alternative */
759 FALSE = 0,
760 TRUE = 1
761 };
762
763 This syntax is preferred because one does not have to wait until the
764 end of a declaration to figure out the name of the new type.
765
766 4.19. Optional-Data
767
768 Optional-data is one kind of union that occurs so frequently that we
769 give it a special syntax of its own for declaring it. It is declared
770 as follows:
771
772 type-name *identifier;
773
774 This is equivalent to the following union:
775
776 union switch (bool opted) {
777 case TRUE:
778 type-name element;
779 case FALSE:
780 void;
781 } identifier;
782
783
784
785
786 Eisler Standards Track [Page 14]
787 FF
788 RFC 4506 XDR: External Data Representation Standard May 2006
789
790
791 It is also equivalent to the following variable-length array
792 declaration, since the boolean "opted" can be interpreted as the
793 length of the array:
794
795 type-name identifier<1>;
796
797 Optional-data is not so interesting in itself, but it is very useful
798 for describing recursive data-structures such as linked-lists and
799 trees. For example, the following defines a type "stringlist" that
800 encodes lists of zero or more arbitrary length strings:
801
802 struct stringentry {
803 string item<>;
804 stringentry *next;
805 };
806
807 typedef stringentry *stringlist;
808
809 It could have been equivalently declared as the following union:
810

-15-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

811 union stringlist switch (bool opted) {
812 case TRUE:
813 struct {
814 string item<>;
815 stringlist next;
816 } element;
817 case FALSE:
818 void;
819 };
820
821 or as a variable-length array:
822
823 struct stringentry {
824 string item<>;
825 stringentry next<1>;
826 };
827
828 typedef stringentry stringlist<1>;
829
830 Both of these declarations obscure the intention of the stringlist
831 type, so the optional-data declaration is preferred over both of
832 them. The optional-data type also has a close correlation to how
833 recursive data structures are represented in high-level languages
834 such as Pascal or C by use of pointers. In fact, the syntax is the
835 same as that of the C language for pointers.
836
837
838
839
840
841
842 Eisler Standards Track [Page 15]
843 FF
844 RFC 4506 XDR: External Data Representation Standard May 2006
845
846
847 4.20. Areas for Future Enhancement
848
849 The XDR standard lacks representations for bit fields and bitmaps,
850 since the standard is based on bytes. Also missing are packed (or
851 binary-coded) decimals.
852
853 The intent of the XDR standard was not to describe every kind of data
854 that people have ever sent or will ever want to send from machine to
855 machine. Rather, it only describes the most commonly used data-types
856 of high-level languages such as Pascal or C so that applications
857 written in these languages will be able to communicate easily over
858 some medium.
859
860 One could imagine extensions to XDR that would let it describe almost
861 any existing protocol, such as TCP. The minimum necessary for this
862 is support for different block sizes and byte-orders. The XDR
863 discussed here could then be considered the 4-byte big-endian member
864 of a larger XDR family.

-16-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

865
866 5. Discussion
867
868 (1) Why use a language for describing data? What's wrong with
869 diagrams?
870
871 There are many advantages in using a data-description language such
872 as XDR versus using diagrams. Languages are more formal than
873 diagrams and lead to less ambiguous descriptions of data. Languages
874 are also easier to understand and allow one to think of other issues
875 instead of the low-level details of bit encoding. Also, there is a
876 close analogy between the types of XDR and a high-level language such
877 as C or Pascal. This makes the implementation of XDR encoding and
878 decoding modules an easier task. Finally, the language specification
879 itself is an ASCII string that can be passed from machine to machine
880 to perform on-the-fly data interpretation.
881
882 (2) Why is there only one byte-order for an XDR unit?
883
884 Supporting two byte-orderings requires a higher-level protocol for
885 determining in which byte-order the data is encoded. Since XDR is
886 not a protocol, this can't be done. The advantage of this, though,
887 is that data in XDR format can be written to a magnetic tape, for
888 example, and any machine will be able to interpret it, since no
889 higher-level protocol is necessary for determining the byte-order.
890
891 (3) Why is the XDR byte-order big-endian instead of little-endian?
892 Isn't this unfair to little-endian machines such as the VAX(r),
893 which has to convert from one form to the other?
894
895
896
897
898 Eisler Standards Track [Page 16]
899 FF
900 RFC 4506 XDR: External Data Representation Standard May 2006
901
902
903 Yes, it is unfair, but having only one byte-order means you have to
904 be unfair to somebody. Many architectures, such as the Motorola
905 68000* and IBM 370*, support the big-endian byte-order.
906
907 (4) Why is the XDR unit four bytes wide?
908
909 There is a tradeoff in choosing the XDR unit size. Choosing a small
910 size, such as two, makes the encoded data small, but causes alignment
911 problems for machines that aren't aligned on these boundaries. A
912 large size, such as eight, means the data will be aligned on
913 virtually every machine, but causes the encoded data to grow too big.
914 We chose four as a compromise. Four is big enough to support most
915 architectures efficiently, except for rare machines such as the
916 eight-byte-aligned Cray*. Four is also small enough to keep the
917 encoded data restricted to a reasonable size.
918

-17-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

919 (5) Why must variable-length data be padded with zeros?
920
921 It is desirable that the same data encode into the same thing on all
922 machines, so that encoded data can be meaningfully compared or
923 checksummed. Forcing the padded bytes to be zero ensures this.
924
925 (6) Why is there no explicit data-typing?
926
927 Data-typing has a relatively high cost for what small advantages it
928 may have. One cost is the expansion of data due to the inserted type
929 fields. Another is the added cost of interpreting these type fields
930 and acting accordingly. And most protocols already know what type
931 they expect, so data-typing supplies only redundant information.
932 However, one can still get the benefits of data-typing using XDR.
933 One way is to encode two things: first, a string that is the XDR data
934 description of the encoded data, and then the encoded data itself.
935 Another way is to assign a value to all the types in XDR, and then
936 define a universal type that takes this value as its discriminant and
937 for each value, describes the corresponding data type.
938
939 6. The XDR Language Specification
940
941 6.1. Notational Conventions
942
943 This specification uses an extended Back-Naur Form notation for
944 describing the XDR language. Here is a brief description of the
945 notation:
946
947 (1) The characters '|', '(', ')', '[', ']', '"', and '*' are special.
948 (2) Terminal symbols are strings of any characters surrounded by
949 double quotes. (3) Non-terminal symbols are strings of non-special
950 characters. (4) Alternative items are separated by a vertical bar
951
952
953
954 Eisler Standards Track [Page 17]
955 FF
956 RFC 4506 XDR: External Data Representation Standard May 2006
957
958
959 ("|"). (5) Optional items are enclosed in brackets. (6) Items are
960 grouped together by enclosing them in parentheses. (7) A '*'
961 following an item means 0 or more occurrences of that item.
962
963 For example, consider the following pattern:
964
965 "a " "very" (", " "very")* [" cold " "and "] " rainy "
966 ("day" | "night")
967
968 An infinite number of strings match this pattern. A few of them are:
969
970 "a very rainy day"
971 "a very, very rainy day"
972 "a very cold and rainy day"

-18-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

973 "a very, very, very cold and rainy night"
974
975 6.2. Lexical Notes
976
977 (1) Comments begin with '/*' and terminate with '*/'. (2) White
978 space serves to separate items and is otherwise ignored. (3) An
979 identifier is a letter followed by an optional sequence of letters,
980 digits, or underbar ('_'). The case of identifiers is not ignored.
981 (4) A decimal constant expresses a number in base 10 and is a
982 sequence of one or more decimal digits, where the first digit is not
983 a zero, and is optionally preceded by a minus-sign ('-'). (5) A
984 hexadecimal constant expresses a number in base 16, and must be
985 preceded by '0x', followed by one or hexadecimal digits ('A', 'B',
986 'C', 'D', E', 'F', 'a', 'b', 'c', 'd', 'e', 'f', '0', '1', '2', '3',
987 '4', '5', '6', '7', '8', '9'). (6) An octal constant expresses a
988 number in base 8, always leads with digit 0, and is a sequence of one
989 or more octal digits ('0', '1', '2', '3', '4', '5', '6', '7').
990
991 6.3. Syntax Information
992
993 declaration:
994 type-specifier identifier
995 | type-specifier identifier "[" value "]"
996 | type-specifier identifier "<" [value] ">"
997 | "opaque" identifier "[" value "]"
998 | "opaque" identifier "<" [value] ">"
999 | "string" identifier "<" [value] ">"
1000 | type-specifier "*" identifier
1001 | "void"
1002
1003 value:
1004 constant
1005 | identifier
1006
1007
1008
1009
1010 Eisler Standards Track [Page 18]
1011 FF
1012 RFC 4506 XDR: External Data Representation Standard May 2006
1013
1014
1015 constant:
1016 decimal-constant | hexadecimal-constant | octal-constant
1017
1018 type-specifier:
1019 ["unsigned"] "int"
1020 | ["unsigned"] "hyper"
1021 | "float"
1022 | "double"
1023 | "quadruple"
1024 | "bool"
1025 | enum-type-spec
1026 | struct-type-spec

-19-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1027 | union-type-spec
1028 | identifier
1029
1030 enum-type-spec:
1031 "enum" enum-body
1032
1033 enum-body:
1034 "{"
1035 (identifier "=" value)
1036 ("," identifier "=" value)*
1037 "}"
1038
1039 struct-type-spec:
1040 "struct" struct-body
1041
1042 struct-body:
1043 "{"
1044 (declaration ";")
1045 (declaration ";")*
1046 "}"
1047
1048 union-type-spec:
1049 "union" union-body
1050
1051 union-body:
1052 "switch" "(" declaration ")" "{"
1053 case-spec
1054 case-spec *
1055 ["default" ":" declaration ";"]
1056 "}"
1057
1058 case-spec:
1059 ("case" value ":")
1060 ("case" value ":") *
1061 declaration ";"
1062
1063
1064
1065
1066 Eisler Standards Track [Page 19]
1067 FF
1068 RFC 4506 XDR: External Data Representation Standard May 2006
1069
1070
1071 constant-def:
1072 "const" identifier "=" constant ";"
1073
1074 type-def:
1075 "typedef" declaration ";"
1076 | "enum" identifier enum-body ";"
1077 | "struct" identifier struct-body ";"
1078 | "union" identifier union-body ";"
1079
1080 definition:

-20-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1081 type-def
1082 | constant-def
1083
1084 specification:
1085 definition *
1086
1087 6.4. Syntax Notes
1088
1089 (1) The following are keywords and cannot be used as identifiers:
1090 "bool", "case", "const", "default", "double", "quadruple", "enum",
1091 "float", "hyper", "int", "opaque", "string", "struct", "switch",
1092 "typedef", "union", "unsigned", and "void".
1093
1094 (2) Only unsigned constants may be used as size specifications for
1095 arrays. If an identifier is used, it must have been declared
1096 previously as an unsigned constant in a "const" definition.
1097
1098 (3) Constant and type identifiers within the scope of a specification
1099 are in the same name space and must be declared uniquely within this
1100 scope.
1101
1102 (4) Similarly, variable names must be unique within the scope of
1103 struct and union declarations. Nested struct and union declarations
1104 create new scopes.
1105
1106 (5) The discriminant of a union must be of a type that evaluates to
1107 an integer. That is, "int", "unsigned int", "bool", an enumerated
1108 type, or any typedefed type that evaluates to one of these is legal.
1109 Also, the case values must be one of the legal values of the
1110 discriminant. Finally, a case value may not be specified more than
1111 once within the scope of a union declaration.
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122 Eisler Standards Track [Page 20]
1123 FF
1124 RFC 4506 XDR: External Data Representation Standard May 2006
1125
1126
1127 7. An Example of an XDR Data Description
1128
1129 Here is a short XDR data description of a thing called a "file",
1130 which might be used to transfer files from one machine to another.
1131
1132 const MAXUSERNAME = 32; /* max length of a user name */
1133 const MAXFILELEN = 65535; /* max length of a file */
1134 const MAXNAMELEN = 255; /* max length of a file name */

-21-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1135
1136 /*
1137 * Types of files:
1138 */
1139 enum filekind {
1140 TEXT = 0, /* ascii data */
1141 DATA = 1, /* raw data */
1142 EXEC = 2 /* executable */
1143 };
1144
1145 /*
1146 * File information, per kind of file:
1147 */
1148 union filetype switch (filekind kind) {
1149 case TEXT:
1150 void; /* no extra information */
1151 case DATA:
1152 string creator<MAXNAMELEN>; /* data creator */
1153 case EXEC:
1154 string interpretor<MAXNAMELEN>; /* program interpretor */
1155 };
1156
1157 /*
1158 * A complete file:
1159 */
1160 struct file {
1161 string filename<MAXNAMELEN>; /* name of file */
1162 filetype type; /* info about file */
1163 string owner<MAXUSERNAME>; /* owner of file */
1164 opaque data<MAXFILELEN>; /* file data */
1165 };
1166
1167 Suppose now that there is a user named "john" who wants to store his
1168 lisp program "sillyprog" that contains just the data "(quit)". His
1169 file would be encoded as follows:
1170
1171
1172
1173
1174
1175
1176
1177
1178 Eisler Standards Track [Page 21]
1179 FF
1180 RFC 4506 XDR: External Data Representation Standard May 2006
1181
1182
1183 OFFSET HEX BYTES ASCII COMMENTS
1184 ------ --------- ----- --------
1185 0 00 00 00 09 -- length of filename = 9
1186 4 73 69 6c 6c sill -- filename characters
1187 8 79 70 72 6f ypro -- ... and more characters ...
1188 12 67 00 00 00 g... -- ... and 3 zero-bytes of fill

-22-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1189 16 00 00 00 02 -- filekind is EXEC = 2
1190 20 00 00 00 04 -- length of interpretor = 4
1191 24 6c 69 73 70 lisp -- interpretor characters
1192 28 00 00 00 04 -- length of owner = 4
1193 32 6a 6f 68 6e john -- owner characters
1194 36 00 00 00 06 -- length of file data = 6
1195 40 28 71 75 69 (qui -- file data bytes ...
1196 44 74 29 00 00 t).. -- ... and 2 zero-bytes of fill
1197
1198 8. Security Considerations
1199
1200 XDR is a data description language, not a protocol, and hence it does
1201 not inherently give rise to any particular security considerations.
1202 Protocols that carry XDR-formatted data, such as NFSv4, are
1203 responsible for providing any necessary security services to secure
1204 the data they transport.
1205
1206 Care must be take to properly encode and decode data to avoid
1207 attacks. Known and avoidable risks include:
1208
1209 * Buffer overflow attacks. Where feasible, protocols should be
1210 defined with explicit limits (via the "<" [value] ">" notation
1211 instead of "<" ">") on elements with variable-length data types.
1212 Regardless of the feasibility of an explicit limit on the
1213 variable length of an element of a given protocol, decoders need
1214 to ensure the incoming size does not exceed the length of any
1215 provisioned receiver buffers.
1216
1217 * Nul octets embedded in an encoded value of type string. If the
1218 decoder's native string format uses nul-terminated strings, then
1219 the apparent size of the decoded object will be less than the
1220 amount of memory allocated for the string. Some memory
1221 deallocation interfaces take a size argument. The caller of the
1222 deallocation interface would likely determine the size of the
1223 string by counting to the location of the nul octet and adding
1224 one. This discrepancy can cause memory leakage (because less
1225 memory is actually returned to the free pool than allocated),
1226 leading to system failure and a denial of service attack.
1227
1228 * Decoding of characters in strings that are legal ASCII
1229 characters but nonetheless are illegal for the intended
1230 application. For example, some operating systems treat the '/'
1231
1232
1233
1234 Eisler Standards Track [Page 22]
1235 FF
1236 RFC 4506 XDR: External Data Representation Standard May 2006
1237
1238
1239 character as a component separator in path names. For a
1240 protocol that encodes a string in the argument to a file
1241 creation operation, the decoder needs to ensure that '/' is not
1242 inside the component name. Otherwise, a file with an illegal

-23-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1243 '/' in its name will be created, making it difficult to remove,
1244 and is therefore a denial of service attack.
1245
1246 * Denial of service caused by recursive decoder or encoder
1247 subroutines. A recursive decoder or encoder might process data
1248 that has a structured type with a member of type optional data
1249 that directly or indirectly refers to the structured type (i.e.,
1250 a linked list). For example,
1251
1252 struct m {
1253 int x;
1254 struct m *next;
1255 };
1256
1257 An encoder or decoder subroutine might be written to recursively
1258 call itself each time another element of type "struct m" is
1259 found. An attacker could construct a long linked list of
1260 "struct m" elements in the request or response, which then
1261 causes a stack overflow on the decoder or encoder. Decoders and
1262 encoders should be written non-recursively or impose a limit on
1263 list length.
1264
1265 9. IANA Considerations
1266
1267 It is possible, if not likely, that new data types will be added to
1268 XDR in the future. The process for adding new types is via a
1269 standards track RFC and not registration of new types with IANA.
1270 Standards track RFCs that update or replace this document should be
1271 documented as such in the RFC Editor's database of RFCs.
1272
1273 10. Trademarks and Owners
1274
1275 SUN WORKSTATION Sun Microsystems, Inc.
1276 VAX Hewlett-Packard Company
1277 IBM-PC International Business Machines Corporation
1278 Cray Cray Inc.
1279 NFS Sun Microsystems, Inc.
1280 Ethernet Xerox Corporation.
1281 Motorola 68000 Motorola, Inc.
1282 IBM 370 International Business Machines Corporation
1283
1284
1285
1286
1287
1288
1289
1290 Eisler Standards Track [Page 23]
1291 FF
1292 RFC 4506 XDR: External Data Representation Standard May 2006
1293
1294
1295 11. ANSI/IEEE Standard 754-1985
1296

-24-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1297 The definition of NaNs, signed zero and infinity, and denormalized
1298 numbers from [IEEE] is reproduced here for convenience. The
1299 definitions for quadruple-precision floating point numbers are
1300 analogs of those for single and double-precision floating point
1301 numbers and are defined in [IEEE].
1302
1303 In the following, 'S' stands for the sign bit, 'E' for the exponent,
1304 and 'F' for the fractional part. The symbol 'u' stands for an
1305 undefined bit (0 or 1).
1306
1307 For single-precision floating point numbers:
1308
1309 Type S (1 bit) E (8 bits) F (23 bits)
1310 ---- --------- ---------- -----------
1311 signalling NaN u 255 (max) .0uuuuu---u
1312 (with at least
1313 one 1 bit)
1314 quiet NaN u 255 (max) .1uuuuu---u
1315
1316 negative infinity 1 255 (max) .000000---0
1317
1318 positive infinity 0 255 (max) .000000---0
1319
1320 negative zero 1 0 .000000---0
1321
1322 positive zero 0 0 .000000---0
1323
1324 For double-precision floating point numbers:
1325
1326 Type S (1 bit) E (11 bits) F (52 bits)
1327 ---- --------- ----------- -----------
1328 signalling NaN u 2047 (max) .0uuuuu---u
1329 (with at least
1330 one 1 bit)
1331 quiet NaN u 2047 (max) .1uuuuu---u
1332
1333 negative infinity 1 2047 (max) .000000---0
1334
1335 positive infinity 0 2047 (max) .000000---0
1336
1337 negative zero 1 0 .000000---0
1338
1339 positive zero 0 0 .000000---0
1340
1341
1342
1343
1344
1345
1346 Eisler Standards Track [Page 24]
1347 FF
1348 RFC 4506 XDR: External Data Representation Standard May 2006
1349
1350

-25-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1351 For quadruple-precision floating point numbers:
1352
1353 Type S (1 bit) E (15 bits) F (112 bits)
1354 ---- --------- ----------- ------------
1355 signalling NaN u 32767 (max) .0uuuuu---u
1356 (with at least
1357 one 1 bit)
1358 quiet NaN u 32767 (max) .1uuuuu---u
1359
1360 negative infinity 1 32767 (max) .000000---0
1361
1362 positive infinity 0 32767 (max) .000000---0
1363
1364 negative zero 1 0 .000000---0
1365
1366 positive zero 0 0 .000000---0
1367
1368 Subnormal numbers are represented as follows:
1369
1370 Precision Exponent Value
1371 --------- -------- -----
1372 Single 0 (-1)**S * 2**(-126) * 0.F
1373
1374 Double 0 (-1)**S * 2**(-1022) * 0.F
1375
1376 Quadruple 0 (-1)**S * 2**(-16382) * 0.F
1377
1378 12. Normative References
1379
1380 [IEEE] "IEEE Standard for Binary Floating-Point Arithmetic",
1381 ANSI/IEEE Standard 754-1985, Institute of Electrical and
1382 Electronics Engineers, August 1985.
1383
1384 13. Informative References
1385
1386 [KERN] Brian W. Kernighan & Dennis M. Ritchie, "The C Programming
1387 Language", Bell Laboratories, Murray Hill, New Jersey, 1978.
1388
1389 [COHE] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE
1390 Computer, October 1981.
1391
1392 [COUR] "Courier: The Remote Procedure Call Protocol", XEROX
1393 Corporation, XSIS 038112, December 1981.
1394
1395 [SPAR] "The SPARC Architecture Manual: Version 8", Prentice Hall,
1396 ISBN 0-13-825001-4.
1397
1398 [HPRE] "HP Precision Architecture Handbook", June 1987, 5954-9906.
1399
1400
1401
1402 Eisler Standards Track [Page 25]
1403 FF
1404 RFC 4506 XDR: External Data Representation Standard May 2006

-26-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1405
1406
1407 14. Acknowledgements
1408
1409 Bob Lyon was Sun's visible force behind ONC RPC in the 1980s. Sun
1410 Microsystems, Inc., is listed as the author of RFC 1014. Raj
1411 Srinivasan and the rest of the old ONC RPC working group edited RFC
1412 1014 into RFC 1832, from which this document is derived. Mike Eisler
1413 and Bill Janssen submitted the implementation reports for this
1414 standard. Kevin Coffman, Benny Halevy, and Jon Peterson reviewed
1415 this document and gave feedback. Peter Astrand and Bryan Olson
1416 pointed out several errors in RFC 1832 which are corrected in this
1417 document.
1418
1419 Editor's Address
1420
1421 Mike Eisler
1422 5765 Chase Point Circle
1423 Colorado Springs, CO 80919
1424 USA
1425
1426 Phone: 719-599-9026
1427 EMail: email2mre-rfc4506@yahoo.com
1428
1429 Please address comments to: nfsv4@ietf.org
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458 Eisler Standards Track [Page 26]

-27-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1459 FF
1460 RFC 4506 XDR: External Data Representation Standard May 2006
1461
1462
1463 Full Copyright Statement
1464
1465 Copyright (C) The Internet Society (2006).
1466
1467 This document is subject to the rights, licenses and restrictions
1468 contained in BCP 78, and except as set forth therein, the authors
1469 retain all their rights.
1470
1471 This document and the information contained herein are provided on an
1472 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
1473 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
1474 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
1475 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
1476 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
1477 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1478
1479 Intellectual Property
1480
1481 The IETF takes no position regarding the validity or scope of any
1482 Intellectual Property Rights or other rights that might be claimed to
1483 pertain to the implementation or use of the technology described in
1484 this document or the extent to which any license under such rights
1485 might or might not be available; nor does it represent that it has
1486 made any independent effort to identify any such rights. Information
1487 on the procedures with respect to rights in RFC documents can be
1488 found in BCP 78 and BCP 79.
1489
1490 Copies of IPR disclosures made to the IETF Secretariat and any
1491 assurances of licenses to be made available, or the result of an
1492 attempt made to obtain a general license or permission for the use of
1493 such proprietary rights by implementers or users of this
1494 specification can be obtained from the IETF on-line IPR repository at
1495 http://www.ietf.org/ipr.
1496
1497 The IETF invites any interested party to bring to its attention any
1498 copyrights, patents or patent applications, or other proprietary
1499 rights that may cover technology that may be required to implement
1500 this standard. Please address the information to the IETF at
1501 ietf-ipr@ietf.org.
1502
1503 Acknowledgement
1504
1505 Funding for the RFC Editor function is provided by the IETF
1506 Administrative Support Activity (IASA).
1507
1508
1509
1510
1511
1512

-28-

D:\home\hmussman\MyDocuments\GENI_WorkingGroups_InstrumentationMeasurement\060810_InstMeasWorkshop2\Handouts_v1.1\ref OMF_OML-1 rfc4506.txtFriday, June 04, 2010 2:32 PM

1513
1514 Eisler Standards Track [Page 27]
1515 FF
1516

-29-

ScalableFramework for Representation and Exchange of Network
Measurements

Jason Zurawski, Martin Swany Dan Gunter
Department of Computer and Information Sciences Lawrence Berkeley National Laboratory

University of Delaware, Newark, DE 19716 Berkeley, CA 94720
{zurawski, swany}@cis.udel.edu dkgunter@lbl.gov

Abstract

Grid and distributed computing environments are
evolving rapidly and driving the development of sys-
tem and network technologies. The design of applica-
tions has seen an increased emphasis upon adapting
application behavior based on the performance of the
network. In addition, network operators and network
researchers are also quite interested in gathering and
studying network performance information.

This work presents an extensible framework for the
storage and exchange of performance measurements.
Leveraging some existing storage and exchange mech-
anisms, the proposed framework is capable of han-
dling a wide variety of measurements and delivers per-
formance comparable to that of faster, less flexible, ad-
hoc solutions.

1 Introduction

The collection of network measurements for use in
distributed and Grid environments is desirable for en-
abling adaptive usage of resources, as well as for op-
erational support and utilization information for ac-
counting. Many tools exist to measure the various
“characteristics” of the network, such asbandwidth,
delay, andloss. Statistical information derived from
these measurements is needed for predicting future
performance, and for the tuning of networked appli-
cations. However, without a consistent and readily
available set of names for, and representations of this
diverse pool of information, analyses spanning mul-

tiple organizations and network measurement infras-
tructures are difficult to perform and validate.

In this paper, we describe and investigate an exten-
sible system for storing and processing performance
information in distributed environments, such as the
Grid. We limit the scope of our description and results
to the system’s primary goal of storing and processing
network metrics, but note that the design is generaliz-
able to other types of performance information.

As we are focused on programmatic access to mea-
surements, storage and exchange formats play an im-
portant role in the overall design of the system. The
formats employed in this work were developed as part
of work within the Global Grid Forum (GGF) Network
Measurements Working Group (NM-WG) [13] and are
currently used in several other projects [15,9,1,18,20].
To keep the representation of data as general as pos-
sible, a relatively abstract framework was developed
that explicitly separates the data values, which are ex-
pected to be frequently updated, from its less dynamic
metadata. In stable storage, this lends itself to a more
normalized layout for the measurement. On the wire
and in a Web Services [24] context, it forms the ba-
sis for an “include by reference” mechanism, allowing
implementations to eliminate redundant information in
a way that is independent of the specific data represen-
tation.

2 Problem Statement

There are potentially conflicting design goals that
motivate this work, such as the tension between in-
teroperability and flexibility. Agreeing on standard

mechanisms for sharing data in a large and diverse
group like the GGF [8] has made it clear that a single
interface and storage format is difficult to define, since
there are many different environments in which perfor-
mance information is gathered, used, and encoded. Of
course, any solution which is so rigid as to preclude the
inevitable advances in this area will not be successful.
Challenges aside, the goals of our measurement and
monitoring framework must facilitate:

• Normalized data encoding in canonical formats

• Extensibility to new data sources

• Flexible re-use of basic components

• Use of existing solutions and technologies

• Language/Implementation independence

One key facet of our problem is the apparent trade-
off between extensibility and efficiency for Grid per-
formance monitoring systems. On the one hand, the
Grid community has adopted World Wide Web Con-
sortium (W3C) [23] standards, such as eXtensible
Markup Language (XML) [27] and Simple Object Ac-
cess Protocol (SOAP) [19] to enable portability and
interoperability. On the other hand, we know that the
performance of the information system is important in
that overhead incurred there affects the performance of
the entire system. Additionally, there are the storage
requirements of the data. Storage of a large number
of encoded data elements, all of which demonstrate a
similar pattern yet contain different information, is in-
efficient.1 We address these two conflicting goals in
turn.

2.1 Measurement Representation

The basic goal of the storage and exchange formats
portion of the framework we present here is to allow
the separation of rapidly changing information, hence-
forth the “data”, from relatively constant information,
or the“metadata”. For example, a networktraceroute
would have as data the IP address and time of each
network probe, and would have as metadata the source
and destination host of the entire probe along with the

1Clearly, this type of storage is quite compressible, but that can
cause problems for searching, etc.

tool used, its parameters, etc. This economy leads to
efficiency. Metadata can then be stored, searched, and
transmitted separately from the more dynamic data.
Identifiers for explicitly linking the metadata and data
sections, even when they do not appear in the same
physical location, are built into the framework.

A secondary goal of the framework is re-usability
within the broader scope of grid information exchange.
Many information exchange schemas, including ear-
lier versions of the GGF NM-WG schemas, had sepa-
rate request and response sub-schemas. The approach
presented here separates the semantics of the exchange
pattern from the semantics of the data representation.
That is, a common representation of data and meta-
data is used for both requests and responses, simpli-
fying the schema considerably and allowing for sub-
sequent re-use of base definitions. This becomes even
more desirable if you consider communicating mea-
surements in a notification framework such as WS-
Notification [25].

2.1.1 Measurement Encoding

XML provides the capability to produce self-
describing documents. This has many advantages,
but efficiency is not one of them. In the words
of the XML 1.0 specification, “Terseness in XML
markup is of minimal importance” [27]. This in-
efficiency makes both serialization and deserializa-
tion much slower than more machine-friendly formats.
However, the gains in interoperability from text-based
self-describing formats are also important for large
distributed systems, as evidenced by the explosion of
XML representations and toolchains in this area. We
attempt to strike a happy medium by minimizing the
redundant elements in the XML representation, and,
when even that won’t do, including support for spec-
ifying out-of-band mechanisms (e.g., binary formats)
for transmitting the bulk of the data.

This approach to encoding can also be viewed as
normalization. By storing the data entries in a nor-
malized fashion and referring to external metadata as
appropriate, we can address all our stated problems.
By providing for simple recurring event storage in
a minimal format, we can support high-performance
data transfers and the automatic assembly of complex,
self-identifying XML structures for simple applica-

tions and for human consumption. We will present
below performance results that show that the schemas
described here impose minimal overhead in compari-
son to raw SQL operations.

2.2 Measurement Exchange

The encoding system we have defined lends itself
to the construction of an interface to store and query
messages. The well defined input and output formats
disallow deviation, while remaining expressive. Web
Service tooling such as Web Services Description Lan-
guage (WSDL) [26] allows for the easy specification
of capabilities as well as connection mechanisms of
a web based service. SOAP provides a simple way
to manage connections as well a known encapsulation
mechanisms for sending information.

Client and server sides may employ any of the nu-
merous flavors of XML parsing software. Our expe-
riences have led us to settle upon classic implemen-
tations, such as the Document Object Model (DOM)
[29] and the XML Path Language (XPath) [30], to ex-
tract information from the exchange messages. This
hybrid approach to parsing has matured due to intrica-
cies in each implementation. Other methods explored
in this work include the cElementtree XML parsing li-
brary [7] for the Python [16] programming language,
which operates on data streams; this is contrary to
DOM needing to load the entire XML document into
memory.

3 Schemas

The framework we present here is comprised of two
major parts: the XML schema definition for measure-
ment instances, and the software designed to store and
deliver these instances on demand. We present a basic
overview of the general schema with the understand-
ing that specialized schemas may be developed from
this initial pattern to fit the many different tools and
characteristics of network measurement. This discus-
sion will be followed by an overview of the prototype
we have designed to manage interface utilization data.

3.1 XML Schema Language

The standardized serialization for the NM-WG data
is XML. Therefore the canonical machine-readable

definition of an NM-WG schema is an XML schema
language. The original such language was Docu-
ment Type Definition (DTDs) [6], which has now
been supplanted as thede factoschema language by
XML Schema [28]. However, for reasons of readabil-
ity and elegance, the primary schema language used
within the NM-WG is OASIS [14] standard RELAX-
NG [17]. Tools exist to perform an automatic transla-
tion from RELAX-NG to XML Schema where this is
appropriate.

A primary reason for using RELAX-NG was its in-
tuitive and readable “compact” syntax.2 To help read
the examples that follow, a brief summary of this syn-
tax follows. Allowed elements and attributes are pre-
fixed with the keyword ’element’ and attribute, with
their datatype enclosed in{curly braces}. Maximum
and minimum number of repetitions given with famil-
iar regular-expression symbols of ’?’ for zero or 1, ’*’
for zero or more, and ’+’ for one or more. Elements
and attributes can be joined by either a ’,’ indicating
sequence, a ’&’ indicating an unordered group, or a
’—’ indicating a choice. Arbitrary groups of the above
patterns can be assigned a name using the ’=’ operator.

3.1.1 NM-WG Base Schema

The major components of base schema are illustrated
in Figure 1. In this figure, the major sections, data and
metadata, are shown side-by-side with the subsections
listed vertically within each section.

The schema for the top-level message envelope
is shown below.3 The message envelope may con-
tain multiple metadata and data sections. The mes-
sage “type” allows distinguishing between storage and
query, for example, when the underlying communica-
tion system may not provide such information.

namespace nmwg =
"http://ggf.org/ns/nmwg/2.0/"

element nmwg:message {
attribute type { xsd:string } &
(Metadata | Data)+

}

The schema for the Metadata element is shown be-
low. Every metadata element must contain an “id” and

2Similar syntax summary of XML Schema would almost cer-
tainly occupy several pages.

3In all the schemas presented inline in the text, some small
details have been left out or modified to enhance readability. Full
schemas are available at [21]

Figure 1. NM-WG Base Schema

may contain an optional “metadataIdRef” (formerly
“metdataId”), which refers to another metadata sec-
tion. This is to allow the Metadata elements to be
“linked” for further reduction in storage overhead.

The metadata section is subdivided into three parts,
only the first of which is required:

• Subject– The physical or logical entity being de-
scribed. For example, a host pair or router ad-
dress. Like the subject of the sentence:Host A to
Host Bmeasured ICMP latency is100ms.

• EventType – The canonical name of the aspect of
the subject being measured, or the actual event
(i.e. “characteristic”) being sought. Like the ob-
ject of the sentence: Host A to Host Bmeasured
ICMP latencyis 100ms.

• Parameters – The way in which the descrip-
tion is being gathered or performed. For ex-
ample, command-line arguments totracerouteor
whether the round-trip delay packet used ICMP
or UDP. Like the descriptive clause of the sen-
tence:When you use100 byte packets,Host A to
Host B ICMP latency is100ms.

namespace nmwg = "http://ggf.org/ns/nmwg/2.0/"

Metadata =
element nmwg:metadata {

attribute id { xsd:string } &
attribute metadataIdRef { xsd:string }? &
Subject &
EventType? &
Parameters?

}

Subject =
element nmwg:subject {

attribute id { xsd:string }
}

EventType =
element nmwg:eventType {

text?
}

Parameters =
element nmwg:parameters {

attribute id { xsd:string }
}

The metadata schema would validate the XML in-
stance below. As in this example, the actual value of
something with an identifier can be omitted for effi-
ciency where it is provided by other context.

<nmwg:metadata id="1">
<subject id="2"/>
<nmwg:eventType>latency.oneway</nmwg:eventType>

</nmwg:metadata>

The schema for the data section is shown below.

namespace nmwg = "http://ggf.org/ns/nmwg/2.0/"

Data =
element nmwg:data {

element id { xsd:string } &
element metadataIdRef { xsd:string } &
(

CommonTime? &
Datum*

)
}

CommonTime =
element nmwg:commonTime {

Time &
Datum*

}
Datum =

Time
}

The ’CommonTime’ section allows the common
case of factoring out a set of data that is associated
with a single time range or timestamp. Time receives
this special treatment because it is the only required
part of any datum. If any data is present, the only re-
quired content for each datum is a time stamp or range.
All other content will be specified in measurement-
specific schema extensions as necessary. Note that by
extending the EventType of the name into the names-
pace, effectively creating a unique name for each type
of event, the timestamp may be all that is necessary.

Time related elements reside in a sub-namespace
from the base. This separation enables the use of time

in extension namespaces, as well as enforces that this
implementation of time is not a “requirement”. The
schema for the time namespace is shown below.

namespace nmtm =
"http://ggf.org/ns/nmwg/time/2.0/"

Time =
element nmtm:time {

attribute type { xsd:string } &
(

TimeStamp |
(

StartTime &
(

EndTime |
attribute duration { xsd:string }

)
)

)
}

StartTime =
element nmtm:start {

attribute type { token } &
attribute inclusive { token }? &
TimeStamp

}

EndTime =
element nmtm:end {

attribute type { token } &
attribute inclusive { token }? &
TimeStamp

}

TimeStamp =
attribute value { xsd:string } |
element nmtm:value { xsd:string }

3.1.2 Schema Extension

The abstract schema will often be extended to repre-
sent the data returned from actual measurements. We
use XMLnamespacesto allow independent extensions
of the schema to co-exist without central coordination
or “vetting”. A namespace is a specific Uniform Re-
source Identifier (URI) that is similar to a Uniform Re-
source Location (URL) resembling the well known for-
mathttp://www.domain.org.

The basic approach is to replace the base schema’s
elements with elements of the same name, but in
the namespace of a specific organization. For ex-
ample, if members of a school’s computer science
department create a new schema, it should be referred
to as a subset of a domain they have access to, i.e.
http://cis.udel.edu/ns/new/tool/1.0/.

In addition, the namespace construct can represent
different versions of the same tool, or different schema
versions through the implicit naming scheme. This
feature fosters ease of transition between extension
namespaces in the face of changing tools and measure-
ments.

Building on the base schema section above, we
present a subset of the interface utilization schema
used in our implementation. This schema is capable
of describing the specifics of a network interface, al-
though for testing purposes the schema remains rela-
tively simple in relation to “real-world” needs.

namespace utilization =
"http://ggf.org/ns/nmwg/characteristic/utilization/1.0/"

namespace nmwgt =
"http://ggf.org/ns/nmwg/topology/2.0/"

include "nmbase.rnc" {
Subject = UtilizationSubject

}

UtilizationSubject =
element utilization:subject {

attribute id { xsd:string } &
Interface?

}

Interface =
element nmwgt:interface {

element nmwgt:ipAddress { {
xsd:string &

attribute type { xsd:string }
}? &
element nmwgt:hostName { xsd:string }? &
element nmwgt:ifIndex { xsd:string }? &
element nmwgt:type { xsd:string }? &
element nmwgt:direction { xsd:string }?

}

The schema would validate for an XML instance
such as this:

<nmwg:metadata id="1">
<utilization:subject id="2">

<nmwgt:interface>
<nmwgt:ipAddress type="v4">128.4.133.163</nmwgt:ipAddress>
<nmwgt:hostName>moonshine.pc.cis.udel.edu</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>

</nmwgt:interface>
</utilization:subject>
<nmwg:eventType>ifInOctets</nmwg:eventType>

</nmwg:metadata>

This extension schema, and subsequent example in-
stance documents, make up the first part of our frame-
work. Constructing tooling to accept, parse, and ex-
tract meaning from these instances becomes the cen-
tral theme of the next section.

3.2 System Design

The storage and exchange format defined previ-
ously forms the basis for the service we present. In-
put and output to the service consists of messages con-
taining varying amounts of information. With this re-
quirement well defined, we must accomplish the goals
of physically sending each message across a transport
medium, parsing useful information from the transient
messages, and performing the “task” assigned to each

message. Our service chooses to implement the tasks
of “storage” (accepting data to store internally) and
“request” (returning data for a known pattern). The
following sections lay out general solutions to the is-
sues at hand. Specifics to our architecture will be fea-
tured in Section 4.

3.2.1 Message Transport

Interoperability with existing technologies is always
a consideration when designing new software for the
Grid. Creating a proprietary encapsulation and trans-
mission protocol would not benefit the community. An
obvious choice for transmission of application layer
messages is SOAP. Care was taken when designing
our SOAP bindings, specifically to the message en-
coding format. One must proceed cautiously, as there
are only four acceptable ways to accomplish the same
goal. These four choices arise from two independent
choices: “RPC” or “document” structure, and “literal”
or “encoded” XML.

To construct a message it is necessary to choose a
structure and an encoding. A description of each is
well beyond the scope of this paper; for our purposes,
we consider the two most common methods:RPC-
EncodedandDocument-Literal.

As suggested by the nameRPC-Encoded, the abbre-
viation “RPC” indicates a remote procedure call, and
the word “encoded” refers to the use of a specialized
set of XML types designed to represent programming
language constructs such as arrays and directed graphs
– structures that are not fully representable in XML
Schema languages. For this and other reasonsRPC-
Encodedis on its way out due to interoperability issues
in many cases.

Document-Literalplaces all the structure for the
message (the whole “document”) in the same place
(the schema definition) as is; this method is thought
to be a “cleaner” and simpler approach. For interop-
erability and simplicityDocument-Literalis the best
approach to start with. However, many toolkits, par-
ticularly ones that focus on simple client-side APIs,
support only the olderRPC-Encodedstyle.

3.2.2 XML Parsing

SOAP messages themselves are constructed with
XML, and when using theDocument-Literalformat,

contain our verbatim message. A natural thought pro-
gression leads to the suggestion of bypassing all “of-
ficial” SOAP parsing software on the client and server
ends in favor of creating a custom parser to handle our
message format, as well as the additional SOAP tags.
This saves the step of needing two rounds of parsing
on the same data.

The advantages and weaknesses of parsing strate-
gies must be weighed when choosing an approach.
The Document Object Model (DOM), for example
features a “document oriented” way of dealing with
an XML instance. Using DOM allows for the total
parsing, extraction, and recognition of all parts of an
XML element and its descendants. Efficiency is not a
strong suit of DOM, because the entire document must
be loaded into main memory upon parsing. As the doc-
ument size grows, performance will certainly suffer.

XPath, which uses portions of DOM internally, on
the other hand, features a “programmatic” way of find-
ing specific elements within an XML instance. XPath
does not have a memory requirement quite as large
as DOM, and therefore can extract useful chunks of
a document while ignoring other portions. XPath is
not the right tool to consider when total extraction of
information is required.

We have come to a compromise that allows for
the simultaneous use of each parser for certain situ-
ations. When used together, we are able to extract
useful metadata and data chunks via XPath; the small
chunks are much easier for DOM to parse in search of
values and meaning. Thus, a speedy solution to XML
parsing is devised, averting issues of memory manage-
ment as well as providing a total and correct evaluation
of XML instances.

3.2.3 Information Storage and Retrieval

Back-end storage is an important consideration in any
system. Speed of insertion and searching can easily
become a bottleneck in high demand systems. Three
basic options exist for storage: Relational database,
XML database, flat file storage.

Relational databases features a well known and eas-
ily programmable interface, reasonable performance,
and wide acceptance. Finding API bindings for the
major database vendors is a simple task, and all ma-
jor operating systems support some form of RDBMS.

XML databases are an emerging technology that sup-
port the insertion and ability to index based on XML
elements. At the present time there are few offerings
from this realm and bindings exist only for a hand-
ful of languages. Flat files are of course an easy and
accessible solution, but will require programmatic in-
tervention to monitor and keep track of the location of
specific information.

Future incarnations of our framework will no doubt
explore these new technologies directly, and may uti-
lize a hybrid approach as demonstrated with our XML
evaluation. Utilizing a single RDBMS makes sense
from both an interoperability and performance stand-
point at this current point in time.

4 Implementation

Driven by the analysis in the previous section we
have implemented a client/server architecture capable
of storing and delivering XML messages conforming
to the NM-WG schemas. Figure 2 describes the con-
ceptual design of our measurement framework. We
have implemented both the client and server portions
and have utilized the service to exchange interface uti-
lization data.

Figure 2. Framework Overview

4.1 Server

The server was implemented in the Perl program-
ming language. Perl features rich APIs for XML
parsing, SOAP operations, and HTTP server capabil-
ities. As stated in the previous section, support for
Document-Literalis limited in most implementations,
and Perl is no exception. A customized HTTP server
was implemented for the receipt and transmission of

SOAP messages. SOAP libraries were used for the
sole purpose of creating envelopes to send data be-
tween components.

XML processing on the server side consists of ex-
tracting the message from the SOAP envelope, and us-
ing DOM to parse the metadata blocks and related data
blocks (in the case the message is meant to store infor-
mation). Request messages are understood to contain
no reference to data, so metadata alone is extracted. In-
formation is gathered and formed into SQL statements
(“insert” statements when we are storing data, and “se-
lect” statements for queries). When requesting infor-
mation the database will return relevant results which
are encoded into XML before being sent back to client
applications.

4.1.1 Database

The MySQL database management system was uti-
lized in this work. This database was chosen for its
efficiency, size, and API interaction. A single table,
wherein each row storing both metadata and data was
constructed. Although this method consumes more
storage space, we avoid the need to join multiple tables
in the case of a query. Arbitrarily large XML dataset
requirements may force future versions to implement
multiple tables within the database.

4.2 Client

Client applications must have the capability to cre-
ate XML messages in the NM-WG format, wrap these
messages in SOAP envelopes, and contact a known
server. The response from the server will also be in
XML format; parsing software must be employed to
extract meaning. Two clients have been constructed
thus far; one implemented in Perl, the other in Python.
Each client is interoperable with the Perl server.

4.2.1 Perl Implementation

As described in the Perl server, the Perl client uses the
same basic SOAP and parsing operations. The client
does not need to implement an entire HTTP server, but
must send its XML message through a socket to the
known address of the server. A response is also ac-
cepted through the socket. After receipt it is parsed
for meaning and can be displayed, or the output may

be funneled to a variety of other applications. For
example, [20] uses interface utilization information
to construct network “weathermaps” (graphical repre-
sentation of network utilization) as well as utilization
graphs over a time range.

4.2.2 Python Implementation

For efficiency, the Python implementation uses a
mostly hand-rolled Web Services stack that is a combi-
nation of Frederick Lundh’s cElementtree XML pars-
ing library [7], and the standard Python HTTP library.
The implementation is simplified in several ways, but
as a result the entire WS stack was implemented in
only a few hundred lines of code. Even though Python
is a compact language, typical SOAP libraries still run
in the thousands of lines. With elementtree, serializa-
tion and parsing are both incremental, and therefore
memory usage is minimal. Although it is only a proto-
type implementation, the Python client holds out hope
that the NM-WG schemas do, indeed, allow the com-
plexity of the implementation to reside mostly outside
the details of the Web Services stack.

5 Experimental Results

To test the performance of this framework we
present tests of the Perl and Python client applications
requesting datasets of various sizes from the server. A
control test has also been designed to request the same
data sets but through simple SQL requests directly to
the database server (lacking XML processing steps).

We performed this experiment over a wide-area
network connection between Lawrence Berkeley Na-
tional Laboratory (LBNL) and the University of
Delaware (UD). The latency on this path was approxi-
mately75 milliseconds, and the (TCP) bandwidth as
measured byiperf [10] was about30Mbits/second.
The client host, at LBNL, was a2GHz single-
processor AMD Athlon XP 2400+; the server host, at
UD contains dual2.40GHz Intel Xeon processors.

Each implementation performed the same5
different-sized queries, returning result sizes from1
to 10, 000, with three variations on each asking for in-
formation from1, 2, or 3 router interfaces. Thus, the
total amount of data returned ranged from1 to 30, 000

items. Each of these (15) different queries was re-
peated5 times.

log num. results

lo
g

qu
er

y
tim

e(
s)

10^1 10^2 10^3 10^4

10^−0.5

10^0.0

10^0.5

10^1.0 perl

python

sql

Figure 3. Query performance

Figure 3 exhibits the query performance of all three
clients, for the three-interface variation of the query
only. Analysis revealed an almost identical pattern of
results for one and two interfaces. In each case, the
SQL client was surprisingly slower than both the Perl
and Python implementation for smaller numbers of re-
sults, becoming comparable for result sets in the hun-
dreds and then becoming the fastest for thousands of
returned items. In other words, the SQL implementa-
tion is shifted upwards but with a flatter slope, which
indicates additional per-query setup time. This pattern
is more pronounced with 2 and 3 interface queries, par-
tially because the SQL implementation performed sep-
arate queries for each interface, whereas the NM-WG
schemas naturally carried multiple metadata sections
(with a query of an interface in each) in a single enve-
lope. The smooth lines are calculated with Friedman’s
“super-smoother” algorithm [22]

The percent overhead, pictured in Figure 4, illus-
trates the “crossover” point between SQL and the

XML implementations more dramatically, partially
because it is a log-normal scale whereas the previous
graph used a log-log scale (to help show the linear
growth of query time vs. results). Previous graphs
demonstrated that there was very little variation within
a set of repeated measurements and that the pattern of
query times is very similar across the number of in-
terfaces being queried. Therefore, we can compare the
medians of the times for a given total number of results
(number of results * number of interfaces) to derive the
percent overhead for Python and Perl relative to SQL.
Again we use the “super-smoother” to help reveal the
pattern of the results.

num. results

%
 o

ve
rh

ea
d

10^0 10^1 10^2 10^3 10^4

−50

0

50

100

150

200
perl

python

Figure 4. Overhead of Perl and Python rela-
tive to direct SQL interaction

5.1 Analysis

The unusually poor times demonstrated by the SQL
client can of course be avoided. Experimental consid-
erations mandated “equal-footing” for the definition
of database queries. The SQL client essentially per-
forms the same queries that a request encoded with a
metadata block would invoke, and there is no ability
to streamline many requests in a single statement exe-
cuted across the WAN.

The performance gap exhibited by the Perl and
Python implementations can be attributed to parsing
technology. The DOM and XPath implementations in
Perl require significant memory, more so than parsers
capable of reading directly from a stream, such as
cElementtree in Python. Keeping a structure contain-
ing large result messages in limited memory space will
inevitably perform more poorly than processing the
message as a stream.

6 Related Work

In [2], the notion of a scalable system that en-
ables the sharing of measurements was explored. Our
work shares the common idea of striving to make di-
verse measurements available, although our approach
through the utilization of the NM-WG schemas of-
fers a uniform storage and exchange mechanism; this
simplifies the client and server interaction as well as
database requirements.

The IETF IPPM Working Group [11] aims to define
metrics that will be used to describe various internet
data delivery services and techniques. Recent work
has been done within the group to develop a registry
[12]. Similarly, we plan to construct a repository for
the registration and storage of schema definitions that
build upon the NM-WG base schemas.

The CAIDA [3] effort is focused on the collection,
analysis, and dissemination of internet measurements.
CAIDA established an “Internet Tools Taxonomy” [5]
to aid in the definition and categorization of measure-
ment tools that could be quite useful as a basis of the
namespaces used in this system. Our future plans in-
clude incorporation of this taxonomy into the GGF
namespace. Additionally CAIDA has begun to archive
and share network measurements and is developing a
schema for that effort [4].

7 Conclusion

We have presented a framework capable of storing
and delivering network measurements via a scalable
representation format. The base format, as defined
by the NM-WG, is complete, compact, and extensible
framework for the representation and storage of per-
formance measurements. This framework separates
metadata from data, providing a normalized and ef-

ficient means for transmitting and storing many mea-
surements. We have shown how this approach pro-
motes efficient and interoperable systems for exchang-
ing performance information in Grid environments.

Our approach allows full use of the Web Services
separation between schematic representation of the
data and the transport protocols used to send it between
parties. This allows the efficiency of data/metadata
separation to be augmented, where desired, by effi-
cient and appropriate wire formats.

Our framework features surprising performance to
that of common ad-hoc solutions, despite needing to
send and parse XML documents of various sizes and
levels of complexity.

8 Acknowledgments

The authors would like to extend thanks to the
members of the Global Grid Forum’s Network Mea-
surement Working Group. Without their encourage-
ment, and insight this work would not be possible.

References

[1] Network Performance Advisor. http://dast.
nlanr.net/Projects/Advisor/.

[2] M. Allman, E. Blanron, and W. Eddy. A scalable sys-
tem for sharing Internet measurement. InPassive and
Active Measurement (PAM), March 2002.

[3] Cooperative Association for Internet Data Analysis.
http://www.caida.org/.

[4] ISMA Data Catalog 2004 Workshop.
http://www.caida.org/outreach/isma/
0406/index.xml.

[5] CAIDA internet tools taxonomy. http://www.
caida.org/tools/taxonomy/ .

[6] Extensible Markup Language 1.0 (Third Edition).
http://www.w3.org/TR/REC-xml/.

[7] The cElementTree Module. http://effbot.
org/zone/celementtree.htm .

[8] Global Grid Forum.http://www.ggf.org.
[9] INCA Test Harness and Reporting Framework.

http://inca.sdsc.edu/.
[10] Iperf. http://dast.nlanr.net/Projects/

Iperf/.
[11] IETF - IP Performance Metrics (IPPM).http://

www.advanced.org/IPPM/.
[12] IETF - IP Performance Metrics Registry).

http://tools.ietf.org/wg/ippm/
draft-ietf-ippm-metrics-registry/.

[13] Network Measurements Working Group (NM-WG).
http://nmwg.internet2.edu .

[14] Organization for the Advancement of Struc-
tured Information Standards. http:
//www.oasis-open.org/home/index.php.

[15] Performance focused Service Oriented Network mon-
itoring ARchitecture. http://monstera.man.
poznan.pl/wiki/index.php/Main_Page.

[16] The Python Programming Language.http://
www.python.org/.

[17] RELAX-NG. http://www.relaxng.org/ .
[18] Stanford Linear Accelerator Center.http://www.

slac.stanford.edu/.
[19] SOAP Specifications. http://www.w3.org/

TR/soap/.
[20] StorCloud. http://www.vtksolutions.

com/StorCloud/2005/.
[21] NM-WG schema and prototype repository.http:

//stout.pc.cis.ude.edu/NWMG/.
[22] Friedman’s SuperSmoother. http://www.

maths.lth.se/help/R/.R/library/
modreg/html/supsmu.html .

[23] World Wide Web Consortium.http://www.w3.
org/.

[24] Web Services. http://www.w3.org/2002/
ws/.

[25] Web Services Notification. http://www.
oasis-open.org/committees/tc_home.
php?wg_abbrev=wsn.

[26] Web Services Description Language.http://
www.w3.org/TR/wsdl.

[27] Extensible Markup Language.http://www.w3.
org/XML/.

[28] XML Schema language.http://www.w3.org/
XML/Schema.

[29] Document Object Model.http://www.w3.org/
DOM/.

[30] XML Path language.http://www.w3.org/TR/
xpath.

http://dast.nlanr.net/Projects/Advisor/

http://dast.nlanr.net/Projects/Advisor/

http://www.caida.org/

http://www.caida.org/outreach/isma/0406/index.xml

http://www.caida.org/outreach/isma/0406/index.xml

http://www.caida.org/tools/taxonomy/

http://www.caida.org/tools/taxonomy/

http://www.w3.org/TR/REC-xml/

http://effbot.org/zone/celementtree.htm

http://effbot.org/zone/celementtree.htm

http://www.ggf.org

http://inca.sdsc.edu/

http://dast.nlanr.net/Projects/Iperf/

http://dast.nlanr.net/Projects/Iperf/

http://www.advanced.org/IPPM/

http://www.advanced.org/IPPM/

http://tools.ietf.org/wg/ippm/draft-ietf-ippm-metrics-registry/

http://tools.ietf.org/wg/ippm/draft-ietf-ippm-metrics-registry/

http://nmwg.internet2.edu

http://www.oasis-open.org/home/index.php

http://www.oasis-open.org/home/index.php

http://monstera.man.poznan.pl/wiki/index.php/Main_Page

http://monstera.man.poznan.pl/wiki/index.php/Main_Page

http://www.python.org/

http://www.python.org/

http://www.relaxng.org/

http://www.slac.stanford.edu/

http://www.slac.stanford.edu/

http://www.w3.org/TR/soap/

http://www.w3.org/TR/soap/

http://www.vtksolutions.com/StorCloud/2005/

http://www.vtksolutions.com/StorCloud/2005/

http://stout.pc.cis.ude.edu/NWMG/

http://stout.pc.cis.ude.edu/NWMG/

http://www.maths.lth.se/help/R/.R/library/modreg/html/supsmu.html

http://www.maths.lth.se/help/R/.R/library/modreg/html/supsmu.html

http://www.maths.lth.se/help/R/.R/library/modreg/html/supsmu.html

http://www.w3.org/

http://www.w3.org/

http://www.w3.org/2002/ws/

http://www.w3.org/2002/ws/

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

http://www.w3.org/TR/wsdl

http://www.w3.org/TR/wsdl

http://www.w3.org/XML/

http://www.w3.org/XML/

http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema

http://www.w3.org/DOM/

http://www.w3.org/DOM/

http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

		Introduction

		Problem Statement

		Measurement Representation

		Measurement Encoding

		Measurement Exchange

		Schemas

		XML Schema Language

		NM-WG Base Schema

		Schema Extension

		System Design

		Message Transport

		XML Parsing

		Information Storage and Retrieval

		Implementation

		Server

		Database

		Client

		Perl Implementation

		Python Implementation

		Experimental Results

		Analysis

		Related Work

		Conclusion

		Acknowledgments

