

Beyond Today's Internet Experiencing a Smart Future

Prototype SDX Bioinformatics Exchange: Demonstrating an Essential Use-Case for Personalized Medicine

Robert Grossman – University of Chicago Joe Mambretti – Northwestern University Piers Nash – University of Chicago Jim Chen – Northwestern University Allison Heath – University of Chicago

Precision Medicine

- Precisely match treatments to patients and their specific disease
- Genomic data promises optimal matching.
- 1.7 million cancer cases diagnosed in America each year.
- A single RNA-seq file is 10-20 GB, Whole genome raw data files are > 100 GB.
- Analysis has become the bottleneck and data size is an issue.
 - 2,000,000 genomes ≈ 1 Exabyte (1,000,000,000,000 MB)
 - Cost to sequence 1 genome less than \$5,000 and falling fast.
 - Cost to analyze 1 genome is approx. \$100,000 and rising.
- A key step towards Algorithm-assisted Personalized medicine is building Data Commons/Cloud analytics and the *Programmable* Networks & Communication Exchanges (SDXs) for high performance, flexible data transport.

Infrastructure for Precision Medicine

NCI Genomic Data Commons

Project		- Start ecombios bu ec	laating a face														
Q. Search for Project Name or ID		- Start searching by se	lecting a lace														
Disease Type Acute Lymphoblastic Leukemia Acute Myeloid Leukemia	8	Table Graph Available Data	per Proj	ect													
Acute Myeloid Leukemia Induction Failure							PAR	RTICIPANT COUL	NT PER DATA T	YPE							
Bladder Urothelial Carcinoma	39 More	PROJECT ID ICGA.BRCA	PART. COUNT	CLINICAL	ARRAY	SEQ	SNV	CNV	sv	DOP	PEXP	METH	OTHER	FILE	FILE SIZE	PRIMARY SITE	
Primary Site		TCGA-GBM TCGA-OV		=							_					Bile Duct	
Blood		CGA-LUAD CGA-UCEC TCGA-KIRC		=				=								Blood	
Kidney	3	TCGA-LGG			=											Bone Brain	
Colorectal	2	ICGA-THCA ICGA-PRAD		=									_	11=\		Breast	
Lung		CGA-STAD CGA-SKCM				1=1					X — X					Colorectal	
	20 Müle	CGA-COAD FCGA-BLCA TCGA-LIHC		-	=	XII						1/1=1				Esophagus	
Program	27	TCGA-CESC TCGA-KIRP									X = 0	(4=)				Head and Neck	
TARGET		CGA-SARC					=						-		N ≡ ₩	Kidney	
Data Type		TCGA-PAAD TCGA-ESCA CGA-PCPG								A=M	N=/				X=X	Lung	
Copy Number Variation	34	CGA-READ									\ -/					- Lymph Nodes - Mesenchymal	
DNA Methylation	34	CGA-THYM									K=X					Mesothelium	
Sene Expression Baw Microarray Data	34	TCGA-ACC -									4=0		UK - 11		~=//	Not Applicable	
Raw Sequencing Data	34	TCGA-UVM							- 10		4-6	PX=				Overy	
	5 More	TCGA-UCS														Pancreas	
Experimental Strategy		TARGET-RT			1										X•Al	- Skin	
Benotyping Array	34	ARGET-NBL	1111	-	T						W-1/		- K			Stomach	
Methylation Array	34	TCGA-CNTL													_#/	Thymus	
nRNA-Seq	34	RGET-CCSK						•		// 🕄				/ 17		Thyroid	
MXS	33	TARGET-OS		XT		1.1	1.1									Uterus	ed
	12 More	TCGA-MISC TCGA-FPPP		<u> </u>		_											
			1.2×	1.2x	1.28	1.1k	1.18	1.28	180	1.2×	450	1.1k	550	5Åk			
															_		_

Harmonization and storage for the Nations Cancer Genomic Data GDC
1.6PB of cancer genomic data and associated clinical data.

Ousig

• Precision Medicine Enabled By Precision Networking

Bionimbus Protected Data Cloud

Console Apply Status Projects

BIONIMBUS PROTECTED DATA CLOUD

Secure cloud services for the scientific community

What is the Bionimbus PDC?

The Bionimbus Protected Data Cloud (PDC) is a collaboration between the Open Science Data Cloud (OSDC) and the IGSB (IGSB,) the Center for Research Informatics (CRI), the Institute for Translational Medicine (ITM), and the University of Chicago Comprehensive Cancer Center (UCCCC). The PDC allows users authorized by NIH to compute over human genomic data from dbGaP in a secure compliant fashion. Currently, selected datasets from the The Cancer Genome Atlas (TCGA) are available in the PDC.

How can I get involved?

- Apply for an Bionimbus PDC account and use the Bionimbus PDC to manage, analyze and share your data.
- Partner with us and add your own racks to the Bionimbus PDC (we will manage them for you).
- Help us develop the open source Bionimbus PDC software stack.

You can contact us at info@opencloudconsortium.org.

How do I get started?

First, apply for an account. Once your account is approved, you can login to the console and get started. Support questions can be directed to support@opensciencedatacloud.org.

Apply for the PDC Now

Login to the PDC Console

Ousic

 Petabyte-scale, secure compliant biomedical cloud that interoperates with dbGaP controlled access data at NIH.

6 Beyond Today's Internet • March 25, 2015

PDC

Infrastructure for Precision Medicine

Future Vision: A Nationwide Virtual Comprehensive Cancer Center

Ousign

8 Beyond Today's Internet • March 25, 2015

Opportunity: Close Integration of Research Workflows and Foundation Networks

- Opportunity: Using GENI To Develop Innovative Techniques for Extremely Close Integration of Research WorkFlows and Dynamic Programmable Network Resources, Enabling Precision Networking
- Network Foundation Architecture: GENI + Innovative Customized Software Defined Networking Exchange (SDX)
- For This Demonstration: Specifically To Meet The Requirements of Bioinformatic Workflows

GENI Network <u>Programmability</u> Is Key

GENI Programmability

- GENI Provides A Platform for Building the Required Precision Communication Services, Networks and Exchanges (SDXs)
- GENI OpenFlow Network
 - National Overlay Infrastructure Comprised of Shared VLANs Interconnected With OpenFlow Switches
 - FOAM/FlowVisor Enabling Sliced OF Switches (e.g., via Subnet, VLAN, Tunnel, etc)
- Discoverable, Integratable, Configurable, Programmable, Virtual Devices: Click Routers, OVS Switches, Mobile Devices, Instrumentation, and Other Resources
- Dynamic Edge Process Topology Design and Implementation

Precision Networks for Precision Medicine

Biomedical Data Commons

GEC22 Bioinformatics SDXs Demo Network

16 Beyond

Today's Demonstration

- A) Dynamically Moving Core Data Files Among Multiple Sites Around the World Via StarLight SDX
- B) Moving RNA-seq Data Files From NCI (Bethesda, MD) and EBI (Hinxton, UK) Through SDX Switch/Routers to The University of Chicago.
 - Analysis By Comparison To Known Data Correlated To Drug Response.
 - Determine Possible Actionable Therapeutic Options.
 - Return Viable Treatment Options To the Originating Site.

Genomic Data Commons Data Transfer

Original Dia	ignosis	-
	Lung squamous cell carcinoma (LUSC) Lung adenocarcinoma (LUAD)	

Potential N	lisdiagnosis os LUSC	•
	Lung squamous cell carcinoma (LUSC)	

Potential N	lisdiagnosis of LUAD	•
	Lung squamous cell carcinoma (LUSC)	

By Express	ion	•
	Lung squamous cell carcinoma (LUSC)	

Results

- Precision medicine requires data commons that scale to hundreds of petabytes scale, with programmable networks and data peering to support data sharing.
- Speed discovery and support analytics-driven healthcare to recommend treatment.
- Large Scale Data Analysis and Dynamic Pipelines For Workflows Are Essential For Determining Optimal Results.

Summary and Future

- <u>What you saw</u>: An innovative approach to advanced knowledge discovery and medical treatment: **Precision medicine being supported by precision networking**
- <u>Why GENI/US Ignite is important</u>: Precision mapping of communication services to BI workflow requirements across the world using advanced analytics, the Genomics Data Commons & a programmable dynamic SDX
- What happens looking forward, for the application and its integration with GENI:
 - A) Further development/refinement of basic capabilities
 - B) Transition to *actual production services*
 - C) The Genomics Data Commons and Bionimbus Protected Data Cloud is Being Developed As a Key Production Knowledge Discovery/Transformational Medical Treatment Facility

🐉 24 Beyond Today's Internet • March 25, 2015

Using GENI To Invent the Future...

Thank You!

