TIED Testbed Control Framework:
Plug-in Desigh Document

Ted Faber, USC/ISI
John Wroclawski, USC/ISI

Draft Version 1.0

Feb 3, 2010

TIED Federation Plug-in Design Feb 3, 2010

Table of Contents

R 1 e T [Tt o o PP 4
1.1 Overview of the DETER/TIED Control Architecture.........c.cocoviiiiiiiiiiiee, 4
1.2 The Role of PIug-ins in the DCA...... e 6

2 Overview of the plug-in specification..........coco i 8

2.1.1 Sub-Experiment Representation.........c.ccoiiiiiiiii i 8
2.1.2 SErVICE MOAEL... oo e 9
2.1.3 Support for AUthoriZzation.... ..o 10

3 Functional Specification of TIED/DCA PIUG-iNS. ..o 11

3.1 MESSAGE FlOW. ittt e 11
3.1.1 MeSSage EXCRaNgeS. . ..cuuiiiiiiiii e 11
3.1.2 Messages and Operation.... ..o 14

3.2 TOPOIOGY DeSCIIPLION. ...t eneenns 20
I R =T o =T) PP 21
3.2.2 SUDSEIAtES. .. 23
G BN [(=T o = T ol PP 24
3.2.4 ATOPAl EXamMPIe. . e 25

G IS VAT = U 26

4 Design Specification for the ProtoGENI Plug-in........ccoooviiiiiiiieea 27

4.1 Coordinating TIED and ProtoGENI Authorization............cccooiviiiiiiiin, 27
4.1.1 Static Authorization Integration: TIED credentials to ProtoGENI user........ 28
4.1.2 Dynamic ProtoGENI Credential Management...........coccoiviiiiiiiiiiiniiiieiieens 29

4.2 Using TIED Topology Descriptions to Allocate ProtoGENI Resources............... 30
4.2.1 ProtoGENI's SFA and the TIED PIUG-iN......cooouiiiiii e 30
4.2.2 Harmonizing Resource Representations (topdl & RSPEC)...........ccocvvvneneen. 31
4.2.3 Creating @ SUb-eXperiment.... ..o 32

4.3 Using ProtoGENI Resources To Interconnect With TIED Sub-experiments....... 33
4.3.1 Best Effort CoONNECIVITYo.uiiiii e 33
4.3.2 Dedicated CONNECHIVITY.......oiiuiii e 34
4.3.3 Other Connectivity EXEENSIONS.couuiiiiiiiieiie e 34

4.4 Establishing TIED Experiment Services Using ProtoGENI Resources................ 35
4.4.1 Configuration SeIVICES.iiii i 35
4.4.2 Traditional SEIVICES ... 36
4.4.3 Initial Services SUPPOITEA......ccu i 38

4.5 Termination of Sub-Experiments and ProtoGENI ACCESS.......cccvvvvviiviiiiiniinennnn. 38

TIED Federation Plug-in Design Feb 3, 2010

4.6 Plug-in Creation Control FIOW........cou i 38

5 Summary

TIED Federation Plug-in Design Feb 3, 2010

1 Introduction

This document performs two functions:

+ It specifies the functional requirements and programming interfaces for
resource management plug-ins within the TIED/DETER Control Architecture
(DCA). Within the DCA, resource management plug-ins provide the interface
between the core control framework and individual facilities (federants) of
different types, allowing federants to contribute physical resources to a TIED
slice / DETER federated experiment. The document proceeds from high level
concepts to detailed interface descriptions. This work is evolving, and we will
publish updates to this specification as stable points are reached.

« Building on the functional and programming interfaces outlined above, it
describes the design of a ProtoGENI[1] plug-in for the TIED system. This plug-
in enables the creation of slices that span ProtoGENI and TIED-enabled
testbeds. ProtoGENI is of particular interest both because it is useful in its
own right and because it implements an interface that is expected to bear
significant resemblance to the initial “converged” GENI API. A working
ProtoGENI plug-in is a significant stepping stone toward a plug-in for the
converged API, as well as providing tests of both the TIED/DCA plug-in
architecture and that APl in both design and implementation phases.

The remainder of this introduction provides an overview of the TIED/DETER Control
Architecture sufficient to understand the role of DCA plug-ins within this
architecture. Section 2 presents an overview of the DCA plug-in functional
specification, while Section 3 gives the functional specification itself. Section 4
presents a detailed design specification for the DCA ProtoGENI plug-in, currently
under development.

1.1 Overview of the DETERITIED Control Architecture

The DETER Control Architecture, on which DETER and TIED are based, supports as
its basic abstraction a substantial generalization of the Utah Emulab[2] model of
experiments and experiment creation. Some key properties of this model are as
follows:

* An experiment consists of logical nodes, which may model many sorts of
computing and communication resources, interconnected by abstract links
and/or LANs to form a network topology in which the experiment is carried
out. In the original Emulab model, nodes are implemented primarily using
general-purpose computers,® while interconnections are created using virtual
networks implemented by off-the-shelf Ethernet switches.

+ Experiments are generally isolated from one another, but make use of
support services provided by the testbed infrastructure, such as file systems

Some support for non-computer nodes and simulation options is also available.

TIED Federation Plug-in Design Feb 3, 2010

shared between experiment nodes and an event delivery system that enables
loosely coordinated changes to the state of experimental nodes.

+ There is a general communication path between experiment nodes and and
testbed servers that can be used to remotely access the experiment
interactively or programmatically. Depending on experimenter's comfort and
familiarity with testbed services, either standard testbed services or more ad
hoc systems may be used to carry out experimental procedures.

The DETER Control Architecture represents and implements a continuing evolution
of this basic testbed model. Key capabilities of the current architecture include:

Support for federated infrastructure. The DCA is generalized to allow multiple
testbeds to contribute nodes and interconnectivity while maintaining the
node/interconnectivity abstraction and and the concept of experiment-wide
services. Further, each testbed retains substantial control over its own resources
and usage policies. When available, a federated experiment may use dynamically
provisioned wide-area networking infrastructure to provide service guarantees.
When such facilities are unavailable, performance between testbeds, either for in-
topology traffic or exported services, is best effort.

Support for heterogeneous and abstract, virtualized experiment elements.
In ongoing work, the DCA is being extended to support a) new classes of physically
realized experiment elements, such as switches, firewalls, reconfigurable hardware
platforms, etc., and b) logical or “virtualized” experiment elements modeled or
emulated using a variety of techniques.

This second class of objects are not emulated directly by physical hardware, but are
virtualized, under a very broad definition of “virtualization.” In our use of the word,
virtualization is the representation of individual experiment elements using
whatever technology is appropriate to meet necessary experiment requirements
and invariants, including scaling to appropriate size while maintaining required
behavior. Thus, the “virtualization” technique for a particular experiment element
may range from a full VM implementation to a lightweight sandbox to a simple
thread of execution. In each case, however, the logical element is viewed and
manipulated similarly by the control architecture.

Support for an expressive, formally verifiable usage policy and access
control infrastructure. To facilitate the use of multiple, federated infrastructure
facilities operated by different entities, and support a broad community of
researchers using these facilities, the DCA supports a rich, expressive, and formally
grounded attributed based access control model (ABAC)[3].

Support for experiment services in a heterogeneous, federated
environment. The Emulab experiment model includes the concept of testbed-wide
services, as well as the basic infrastructure of nodes and links dedicated to an
experiment. In the heterogeneous, federated environment implemented by the
DCA, support for this concept remains extremely useful but becomes more difficult.
As experiment elements become less like general-purpose computers, ideas of
exporting shared file systems or user accounts become less universal. What it would

TIED Federation Plug-in Design Feb 3, 2010

mean to have a shared file system available to a cloud-based real-time simulation
of a botnet is hazy at best.

Beyond this basic issue, from the point of view of a federated system, the services
supported by different underlying testbeds may be significantly different or
incompatible. Yet, we still wish to provide coherent services across these
heterogeneous facilities. This suggests a compositional approach to experiment
services, where individual testbeds characterize the services that they can export or
import and the control architecture builds appropriate environments from them.

Given this environment, the basic process of creating an experiment (slice) in the
TIED/DETER environment consists of three steps:

1. Acquiring access to individual testbeds consistent with local access control
policies.

2. Allocating necessary resources to the experiment using local allocation
strategies.

3. Forming the shared experimental connectivity and composing the required
experiment services.

Each of these functions is implemented within the control architecture of the
DETER/TIED system. Core elements of the DCA are shown in Figure 1 below.

Central to the DCA architecture is the federator. The federator and its control
language, CEDL, serve as a “narrow waist” within the design, providing a unifying
functional layer between, on the one hand, a broad range of specialized tools for
user interaction and experiment configuration, and on the other, the interconnected
resources of multiple physical facilities with different resources and capabilities. The
federator acts as the interface between users who are creating and controlling an
experiment (slice) and the various federants who have supplied the resources that
constitute the slice. It presents users with a single interface for control, but
translates the creation of sub-experiments/slivers into the configuration system of
the local resource owners.

1.2 The Role of Plug-ins in the DCA

The previous section outlined the core elements of the DETER Control Architecture
and described the central role of the federator in this architecture. In
implementation terms, the federator is broken up into two parts, the experiment
controller, which manages the slice or experiment as a whole, and an access
controller for each testbed or facility that contributes resources. The access
controller is responsible for translating the access control decisions from the global
domain into local configurations, for using local resource allocation systems to bind
resources to the experiment, and for configuring those resources to create the
topology and relevant services for the experiment.

TIED Federation Plug-in Design Feb 3, 2010

Because the function of a access controller is specific to the class of testbed or
facility it is controlling, the access controller is implemented as a plug-in, with
different plug-ins used to interface with different classes of facility. The plug-shaped
icons in the figure show the location of these plug-ins within the DCA design. The
figure shows that each plug-in supports two interfaces, a standard one to the
federator and a testbed-specific one to the testbed itself.?

Paolicy Managememt
Tools

Experiment
Des cription
—— Language’ -
Slice & Experiment
IManagement Took

Standard
Interface for Slice
and Experiment
Configuration

Tools

Federant

Usage Policy
IManagement

Provisioned
Connectivity

Site- Speciic
Primary Authentication

Proviioned

C onnectivity
Us er TY e- l
Management p .
Toals _— Specific
Tus
Site User Capability Negotiation Federant Federant
IManagement Architecture contrOI

Based on
Attributes
and Formal
Lagic

Figure 1: The DETER Control Architecture

Plugin

Each plug-in may be implemented and deployed in several configurations,
depending on the operational and administrative requirements of the testbed being
federated. The experiment controller and access controller may run on the same
machine, with the access controller proxying requests back to the testbed it
manages; the access controller may be co-located with the testbed and accessed

2 In the figure it appears that plug-in code must be loaded in the federator
codebase itself, but this is a conceptual diagram rather than an implementation
block diagram. What is important is the standard interface between federator and

plug-in.

TIED Federation Plug-in Design Feb 3, 2010

remotely by the experiment controller; or the plug-in may run on a third machine
unrelated to either the testbed it controls or the location of the experiment
controller. One can think of these layouts as placing more or less functionality in
each of the plugs in Figure 1.

Though each experiment/slice is controlled by one experiment controller,
experiment controllers are fairly lightweight entities. They are responsible for
splitting the experiment up between access controllers and managing the
credentials of the researchers who are creating the experiments. None of these
responsibilities require that the experiment controller run on testbed resources;
experiment controllers that run on desktops and communicate with access
controllers running on testbed nodes is a likely configuration.

The next subsection describes the key features of the plug-in interface and later
sections describe its current state in detail.

2 Overview of the plug-in specification

The motivating features of the plug-in architecture include a topology and
connectivity representation that is extensible and simple to parse, explicit
description of experiment services using an extensible format, and incorporation of
a flexible, expressive, and formally verifiable attribute based authorization system.
Each of these capabilities is discussed briefly below.

2.1.1 Sub-Experiment Representation

The purpose of a sub-experiment representation, or description language, is to
describe the resources and interconnection topology of a sub-experiment - the part
of an overall experiment to be allocated to a single facility or testbed.

Earlier versions of the DCA used straightforward extensions of Emulab's experiment
description language, based on ns-2[4], to describe sub-experiment topologies.
This was a natural design decision when federation primarily concerned itself with
combining Emulab-like resources. The current specification uses a more extensible
model to describe experiments in a declarative language.

The ns2 description language describes experiments as nodes that are tacitly
assumed to be configurable general purpose computers, connected by links or
LANs. Nodes can have arbitrary disk images loaded on them, but are essentially
assumed to have hierarchical file systems and to support the Emulab event system
and shared environment. There are exceptions to these rules, but the underlying
assumptions color the design.

In addition to the underlying bias toward general purpose computers in the Emulab
description language, ns-2 is an extension of tcl[5], which is a Tuning-complete
programming language. Emulab includes libraries for generating declarative
representations from the ns2 programs users upload, but asking each testbed to
translate an arbitrary tcl program into its local resource representation imposes
requirements that not all testbeds are able to meet. More importantly, the
procedural turing-complete nature of the ns2-based description language makes

TIED Federation Plug-in Design Feb 3, 2010

certain formal analysis and verification actions on experiment descriptions
extremely difficult.

Rather than ask access controllers to run programs to create Emulab-centric
representations of sub-experiments, we have specified a declarative, extensible
format for expressing sub-experiments called topd! (short for topology description
language). A complete definition follows later in the document.

Topdl represents general resources that can communicate with one another. A
resource might be a general purpose computer, or a testbed or sub-topology. If two
resources can communicate directly (logically), they share a substrate. Every
resource that is connected to a substrate has an interface to that substrate; a
resource may have multiple interfaces to the same substrate. Substrates represent
logical connectivity.

There are several types of resource defined, and more can be added or derived
from existing definitions. In addition all resources can have simple attribute/value
pairs attached to them without defining new types. The attributes allow fast
prototyping while the full derivation system allows tested ideas to be integrated
easily.

Similarly interfaces and substrates have a few simple properties defined and can be
extended using either mechanism. We plan extensions of substrates to support
wireless interconnection spaces.

Topdl is defined in XML, allowing systems to take advantage of the many tools
available to simply and effectively parse them. We have integrated topdl| into our
existing system.

2.1.2 Service Model

Experiment support services are treated as first class entities, much as resources.
In addition to advertising, allocating, and configuring resources used in the
experiment topology, testbeds advertise, allocate and configure services.

While services and resources have significant similarities, there are key differences
as well. A service often creates an aspect of the experimental environment that is
global with respect to the experiment. Examples might include services for
delivering experiment events throughout the experiment, or services that
synchronize the clocks of experiment elements across multiple testbeds. These
services provide properties that go beyond the hardware donated to the
experiment. Cooperation between testbeds is required.

Creating a service that covers more than one testbed's contribution to an
experiment requires a composition of the implementation of the services on the
federant testbeds. Individual testbeds may fully implement a service locally, in
which case extending the service more widely may be a matter of reconfiguring the
servers inside the testbed. For example, extending a shared file system or time
synchronization can fall into this category. Some testbeds will implement a subset
of the function that can be stitched, modified or expanded. TIED's prototype
implementation of a distributed experiment-wide event system uses this strategy.

TIED Federation Plug-in Design Feb 3, 2010

Finally, some services will be completely nonexistent in the native implementation
of most testbeds. DETER's SEER experiment control framework is not implemented
by most testbeds, but we have been able to import it successfully. There is also the
problem that some services are not supported semantically by some resources; a
shared filesystem may not make sense to a fiber multiplexer.

The process of creating the specified services from the capabilities inherent to the
testbed is the responsibility of the access controller for that testbed. It is
responsible for configuring partial implementations to cooperate with other partial
implementations or to configure clients to talk to outside servers. More complex
configuration is also possible.

The current design for service support is the first step into this complex area. It
allows testbeds to indicate the services they support as exporters or importers
(where completely decentralized services are entirely imported) through their
access controllers and provides a way for the experiment controllers to request and
configure those services. In the same way that topd/ resources can be extended,
service representations can be extended. Support for composition of resources is
planned for the future.

2.1.3 Support for Authorization

The DCA incorporates an expressive, flexible, and formally verifiable access control
system for testbed resources known as ABAC[3]. ABAC is an attribute-based
system for making robust, provable authorization decisions in a distributed
environment. In the DCA, experiment controllers use ABAC to vet researcher
requests, and access controllers use ABAC to authorize allocation of resources and
distribution of services.

Because most testbeds and resource providers already implement some form of
access control, is expected that most access controllers will wish to build on these
preexisting access control mechanisms. Such access controllers will be integrated
with their local testbed's authorization system, and effectively be converting from
the global ABAC based decisions into local decisions and vice versa.

ABAC is largely predicated on delegation. Widely recognized entities, like the
National Science Foundation or a GENI operations office, can provably vet
institutions or individuals, assigning attributes to them that may confer standing or
authority. Individual testbeds may then make decisions based on these assigned
attributes. As a slice or experiment is created, the researcher creating it will
delegate some of his or her authority to the slice and allocation decisions will be
based on that delegation.

These delegations and attributes are all represented in signed credentials. With an
appropriate set of signed credentials, actors (like the controllers) can make
provable decisions. There are provisions to gather missing credentials if they exist,
but the proofs are most efficient when the credentials required are in the actor's
possession.

10

TIED Federation Plug-in Design Feb 3, 2010

The implementation of the ABAC control software is ongoing, but the plug-in
dataflow is organized to provide the relevant delegation points and pass the
credentials to the points making decisions.

3 Functional Specification of TIED/DCA plug-ins

This section of the document lays out the basic plug-in design, with pointers to
more detailed specifications when applicable. Section 3.1 describes the overall
workflow and semantics of operations. Section 3.2 describes the new sub-
experiment representation and Section 3.3 discusses the emerging services
description model. Section 4 describes the design of the ProtoGENI plug-in.

3.1 Message Flow

This section describes the transactions between the experiment controller and
access controller throughout an experiment lifetime. The first section presents the
general overview of the phases of experiment creation and subsequent sections
describe the specific information exchanged in each operation.

These transactions are all defined as WSDL interactions between two web services,
because that allows significant flexibility in service placement and implementation
language. All the transactions are basically remote procedure calls, again for
simplicity and flexibility. We have implemented several different controller layouts
already as well as demonstrating communication across implementations of sub-
components written in C++, Java, and python.

This section describes the interactions at a fairly high level, but the full protocols
are given in commented WSDL. That specification can be found at:
http://fedd.isi.deterlab.net/trac/browser/wsdl/trunk/ .

3.1.1 Message Exchanges

The first step in creating an experiment is to create the slice that will have
resources attached to it, shown in Figure 2. In ABAC terms, this is a principal to
which researchers can delegate credentials used to make access control decisions.
This is an operation between the user and experiment controller. The controller
creates an new identity under which it will request resources and informs the user
of that identity.

Access
Controller Testhed

Figure 2: CreateSlice Exchange

The user then delegates authority to that slice using ABAC. The particular
mechanisms used are orthogonal to the rest of the experiment creation function.

11

http://fedd.isi.deterlab.net/trac/browser/wsdl/trunk/

TIED Federation Plug-in Design Feb 3, 2010

The DFA does provide a mechanism to pass the credentials through from
researchers to controllers.

The plug-in has nothing to do in this phase but we include it to set the stage for
other exchanges.

Access
Request

Access Local

Access Controller ot SR
Granted onfiguration

Experiment
Alloc gte Controller

periment

(0

Figure 3: AccessRequest Exchange

When the user begins to attach resources to the slice - to populate the experiment
- several exchanges take place, the first of which is shown in Figure 3. There is the
initial request from the user, which contains the experiment layout and services
requested, which the experiment controller processes. This request includes
credentials that the user has delegated to the slice.

The experiment layout can be in the legacy ns2 format, or the topdl format
described below. The topdlI layout allows user tools to annotate experiment
elements with attributes that the experiment controller will pass transparently to
the testbeds. This provides a path for tools to include testbed-specific requests in
their federated experiments. Tools that know a specific testbed's access controller
understands an annotation can include it and get the service implied. This provides
a fast prototyping path that does not require every new attribute to be understood
by the experiment controller.

Currently most of the splitting and choices of where to embed which components
are included in this request, but more sophisticated experiment controllers will
make more of those decisions in the future. For each testbed that the experiment
controller will get resources or services from, it contacts that testbed's access
controller with and Access Request. That request contains a summary of the
resources and services of interest to the slice and credentials relevant to the
request. This request is made as the slice created in the initial exchange, so the
credentials include any that the user has delegated to the slice.

The access controller uses the authorization system to decide if the request is
acceptable, and if so configures the testbed to support later requests from this slice.
This configuration may be significant, depending on the nature of the local testbed.
For example our prototype is capable of creating a new Emulab project on the local
testbed, which can require a few minutes.

These access requests proceed in parallel, reducing the overall time to meet the
access requirements.

Of course an access request may fail. The current simple prototype treats this as a

failure to configure the slice, but more sophisticated future experiment controllers
will retry on equivalent testbeds, if they exist.

12

TIED Federation Plug-in Design Feb 3, 2010

Once the Access Requests have all completed, the experiment controller knows that
it has appropriate authority on the various testbeds to make the actual allocations.

At this point the experiment controller informs the user that the experiment is being
populated. Throughout the rest of the allocation the user software can poll the
experiment controller for the status of the experiment, and get partial allocation
logs or error messages. Because configuring testbeds can be a lengthy process -
tens of minutes on Emulabs that have to reallocate an experiment segment several
times due to partial failures — we prefer to do the allocation asynchronously.

Start
Segment OEEEE
Controller Testhed

o

2

Experiment
Controller

Figure 4: StartSegment Exchange

Now the experiment controller starts the individual segments of the experiment,
shown in Figure 4. The request to start the experiment includes the topd]
description of the sub-topology as well as configuration information in the topdl
attributes. Service configuration information is also included.

In particular, the sub-experiment topologies can contain additional elements not
specified by the experimenter that are used to establish in-experiment connectivity
between sub-experiments and that forward or synthesize services used by the
experiment. The configuration of these elements is accomplished using the

features of topdl described below.
. Access Allocate &
Controller Testhed
Cornfigure
(o

Software &
configuration

Experiment
Cantroller

Figure 5: Allocation and Configuration

Starting a segment consists of allocation and configuration of the testbed resources
using the local credentials established at access time, as in Figure 5. This may
include downloading software distributions and configuration files from the
experiment controller. The experiment controller makes this software available
over secure transfer protocols with authorization to access the files given by the
authorization control system. This phase allows tools and services to be established
on testbeds that do not locally maintain the software, while the access control
respects the privacy of confidential implementations.

During this process the user software is likely polling the experiment controller,

which provides information about the starting segments. As sub-experiments are
fully configured and activated, the allocation logs are returned (see below). When a

13

TIED Federation Plug-in Design Feb 3, 2010

user queries the state of the experiment allocation, the most recent log information
is returned to them as well.

To the extent possible, this sub-experiment starting is carried out in parallel.
However some scheduling constraints may appear. For example, transit networks
that allocate particular tags dynamically - VLAN identifiers — may need to report
that allocation before sub-experiments connected by them are started.

Segment
Experiment Started Access
Cantraller Cartraller Testhed

Figure 6: StartSegment completed
As each sub-experiment is activated, the access controller informs the experiment
controller that it has been incorporated into the slice, as in Figure 6. There is no
particular message sent to the user on completion; but each poll includes the state
of the experiment as a whole. When all segments have started, the experiment
state becomes active; if a sub-experiment fails to start, the experiment controller
cleans up to the extent possible and reports the status as failed. The user code can
gather all the logs of the failed experiment from a status poll.

(0

Though we have not diagrammed it, the process of destroying a slice is the reverse
of creating it, with many of the configuration steps removed. Each segment is
removed from the federated testbed in parallel, and then the access granted to
each testbed is removed. Exactly what removing access means to each plug-in
depends on the testbed type and administrative choices. Some testbeds will
remove projects or other data structures, some will simply note that the account is
not currently in use.

3.1.2 Messages and Operation

This section discusses the message fields in the exchanges above in more detail.
The canonical definition of the data structures used is available in the XSD stored at
http://fedd.isi.deterlab.net/svn/wsdl/current/fedd_types.wsdl . In the descriptions
below we give the name of the complexType that contains the message schema.
This section outlines the schematics of those messages.

The interactions above mostly come in request response pairs, where the response
indicates a success. When a request fails, a fault is sent rather than a response
message.

Faults

A fault has three fields:

Name Function

14

http://fedd.isi.deterlab.net/svn/wsdl/current/fedd_types.wsdl

TIED Federation Plug-in Design

Code

Feb 3, 2010

An integer indicating the general type of
fault. Valid values are:

Value

Meaning

Access denied.
Pretty self
explanatory

Proxy error. Older
versions of the
software proxied
more requests, and
this error indicated
that an attempt to
forward a request
to a proxy had
failed. This error is
rare in current
code.

Badly formed
request. In the
unlikely event that
the SOAP encoding
allowed a mis-
formed message to
be sent, this error
is set. Generally it
means a required
field is absent

Server
configuration error.
The server is
unable to process
the request due to
misconfiguration.

Internal error.
Something very
unexpected has
happened at the
server, such that
no other error code
is applicable

15

TIED Federation Plug-in Design

Feb 3, 2010

6 Partial
instantiation. A
request has been
made on an
experiment that
has not been fully
allocated and
configured yet.

7 Federant error.
One of the
federants has
failed to complete
its part of the
operation. This
error commonly
indicates a
resource shortage
when allocating
and configuring an
experiment.

8 Connect error.
Unable to contact a
controller. This
may be a direct
error or an indirect
one. For example,
if an experiment
controller cannot
reach a federant,
this error will be
returned to the
user. It will also be
returned if the
experiment
controller cannot
be reached.

Errstr A string containing the error class. A
simple second representation of the
code that avoids all applications needing
to replicate the table. Optional

Desc More detailed natural language

16

TIED Federation Plug-in Design

Feb 3, 2010

explanation of the error.

Access Request and Access Response

The AccessRequest contains the following fields:

Name

Function

Credential

The credentials attached to this slice.
(ABAC credentials are signed, so these
can be trusted). Multiple credentials
may appear.

Resources

A summary of the resources to be

requested. This field is optional and its
formatting is in flux as it is generalized
away from representing Emulab nodes.

Services

A summary of the services to be
imported and exported to this testbed.
Format in flux.

AllocID

A unique identifier to reference the
access being requested. Generally a
new fedid (that is a new public key) is
used.

When

A date/time at which to request access.
Optional and ignored by current
prototypes.

Until

Duration of access if known. Optional
and ignored by current prototypes.

ExportProject

Deprecated optional field indicating that
this Emulab's project is to be exported to
the other federants.

In practice the experiment controller picks the allocationID and sends a request with
appropriate service and resource fields included. If access is granted the plug-in
creates any underlying structures needed for access - e.g., Emulab projects or users

17

TIED Federation Plug-in Design Feb 3, 2010

—and returns an AccessResponse message. If access is denied or the configuration
fails a fault is thrown explaining the issue.

The AccessResponse contains the following fields:

Name Function

AllocID The allocation ID of this access context

When Start of the validity of the access.
Optional and unused by current
prototypes

Until End of the validity of the access.
Optional and unused by current
prototypes

Emulab Deprecated and optional mechanism for
passing configuration information to the
controller.

This message confirms the access information.

StartSegmentRequest and StartSegmentResponse

The StartSegmentRequest contains information for establishing a sub-experiment
under the given access allocation. Much of the information is contained in the
experiment description field, which is basically a topdl description of the experiment
topology. Section 3.2 describes topdl in detail.

Name Function

AllocID The access allocation to use for this sub-
experiment; this slice's right to access
this allocation is checked.

SegmentDescription The topdl| description of this sub-
experiment. A legacy extended ns2
format is legal to send in this field as
well, but not all access controllers will be
able to interpret it. The extended ns2
format is deprecated.

ServiceDescription Description of the services exported by
this sub-experiment. The format of this
field is in flux.

18

TIED Federation Plug-in Design Feb 3, 2010

Master A boolean indicating that this testbed
should export Emulab services to other
Emulabs. This field is deprecated in
favor of explicit service descriptions and
should be set to false.

FedAttr A set of string-based attribute value
pairs that allow segment wide
parameters to be set. Generally unused
as yet.

The response to this includes the locally formatted log of instantiation and a few
other fields.

Name Function
AllocID The allocation ID again for confirmation
AllocationLog The locally formatted log of allocation

decisions. Usually reported to the user
in status messages

FedAttr Optional string-based attribute value
pairs indicating sub-experiment wide
parameters. The main use for this field
has been to report the VLAN tag selected
by a DRAGON transit network.

Software Downloads

As part of segment configuration, access controllers may need to acquire software
or configuration files from the experiment controller coordinating the experiment.
The location of that software is specified by a URI in the segment description. That
URI points back to a repository run by the experiment controller that uses a TLS-
secured connection to confirm the access controller's fedid and only allow access
controllers involved in the experiment to retrieve it.

TerminateSegmentRequest and TerminateSegmentResponse

Commands to terminate a segment are analogous to those used to start a segment,
but simpler because no information about the segment's composition is required.
The TerminateSegmentRequest includes:

Name Function

AllocID The segment to terminate, by its

19

TIED Federation Plug-in Design Feb 3, 2010

allocation identifier.

Force A boolean. Tells the access controller to
do all it can to remove the segment,
even if the segment is in an
indeterminate or erroneous state.

The TerminateSegmentResponse is equally simple:

Name Function

AllocID The allocation identifier of the
terminated segment.

ReleaseRequest and ReleaseResponse

These messages coordinate the removal of access to the testbed. In the simplest
case, these remove only some small overhead keeping track of the allocation
identifier, but if more local resources - e.g., Emulab projects or user accounts — have
been created, those are removed as well. The messages themselves are
straightforward.

The ReleaseRequest contains:

Name Function

AllocID The access to remove

RequestResponse contains:

Name Function

AllocID The access removed

3.2 Topology Description

Topdl is the encoding of a simple but expressive system for describing experiment
topologies in terms of elements and their ability to directly communicate with each
other. The format is used to communicate much of the information needed in
constructing sub-experiments - or slivers — in a way that is testbed-independent and
extensible. Plug-ins need to parse and interpret topdl to make TIED sub-
experiments.

The elements describe parts of an experiment at different degrees of detail
appropriate to different phases of operation or provisions of different services. For
example, a testbed that is emulating an enterprise network needs to know the
types of computers and their interconnections in some detail. A testbed providing a

20

TIED Federation Plug-in Design Feb 3, 2010

wide-area transit connection between testbeds may not need to know anything
about the internal configuration or even capacities of the testbeds.

Specific resource types do have parameters appropriate to them, but the general
goal of the format is to allow annotations and other extensions as simply as
possible. We expect this extensibility to facilitate fast prototyping of access to new
testbed features or new experiment properties.

Topdl is an initial attempt to meet these needs. It is currently replacing the ns2
experiment representation. As a result of being slotted into that position the
element descriptions that are best fleshed out are computers and networks. Some
other elements are specified and more are being created.

The following sections break out the specific parts of the format in sufficient detail
to understand the basics. The full definition of topdl and its encoding in XSD is
available from http://fedd.isi.deterlab.net/trac/browser/wsdl/trunk/topdl.xsd . Code
that implements a set of objects that follow the hierarchy is available from
http://fedd.isi.deterlab.net/trac/browser/fedd/trunk/federation/topdl.py .

3.2.1 Elements

Elements are the active, configurable parts of the experiment. Examples include
computers, routers, and multiplexers. At different levels of detail they can include
segments (sub-experiments) or testbeds.

Initial Elements

The defined elements currently include others (a base class), computers, testbeds,
and segments. The other element includes:

Name Function

Interfaces The list of interfaces to various
substrates. These are described below.

Attribute A set of string formatted attribute value
pairs.

As other is a base class, any element in topdl can access a substrate and may have
extension attributes attached to it.

A computer element has these properties and:

Name Function

Name One or more strings that allows
reference to this computer. It may be
inserted into an experiment name table
or database as well for experiment

21

http://fedd.isi.deterlab.net/trac/browser/fedd/trunk/federation/topdl.py
http://fedd.isi.deterlab.net/trac/browser/wsdl/trunk/topdl.xsd

TIED Federation Plug-in Design Feb 3, 2010

control.

CPU Descriptions of processors on the
computer. Can include co-processors or
other “thinking” elements.

0S Valid operating system choices for this
computer. This field includes both
provisions for an operating system
version and a standard software
distribution.

Software Additional software installations (outside
the standard distributions included in the
OS field). Software is given by a URI.
Software formats that do not include a
destination directory in the format have
a spot for the location here.

Storage Memory and persistent storage
requirements.

Valid values of these fields are left somewhat free-form so as to allow access
controllers some leeway in allocating hosts, as well as the ability to quickly
incorporate new technologies.

Each of these subfields has a more complex type, accessible from the XSD
description. They are mostly straightforward, so rather than rehashing them here,
we direct the reader to
http://fedd.isi.deterlab.net/trac/broswer/wsdl/trunk/topdl.xsd .

We note that each of these subfields can have name/value attributes attached to
them. This provides an escape to local testbed or plug-in semantics. For example,
an attribute attached to an OS field might tell an Emulab plug-in to use a specific
standard disk image rather than leaving the translation from OS to disk image up to
the access controller.

A segment element encapsulates a sub-experiment that has either been
instantiated or is planned. This is used when passing topology descriptions to
testbeds that provide network transit services. It includes the following fields in
addition to those provided by other elements.

Name Function

ID The federated identifier of the
segment/sub-experiment.

22

http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd

TIED Federation Plug-in Design Feb 3, 2010

Type A string identifying the basic type of the
segment. Primarily used to differentiate
transit sub-experiments from sub-
experiments that contain elements.

URI The URI on which the segment's access
controller can be reached.

A testbed element is primarily intended for use in advertisements or service
descriptions. A testbed that provides transit service between a set of testbeds may
represent itself as a substrate that connects testbed elements. It has the same
fields as a segment element, but without the ID field.

Expanding Elements

Adding new elements is a matter of defining new encodings and attribute meanings
and publicizing them. The ability to attach attributes at many places on elements is
intended to enable simple extensions that eventually become formalized as new
element types. We expect several new element types to appear out of our
ProtoGENI prototyping.

3.2.2 Substrates

A substrate is a region of logical connectivity of elements. Elements that share
access to a given substrate can send messages to each other directly. This is
intentionally vague, as one researcher's idea of logical connectivity might hide a set
of lower level systems that are providing that connectivity, e.g., the Internet.
Another researcher might consider elements to share a substrate only if physically
connected.

Though substrates include attributes that describe bounds on their performance,
they are generally optional and, when present, constitute upper bounds. This is
intended to make substrates suitable for indicating the presence of current simple
interconnection technology, like physcial fiber or copper links, while providing plug-
in creators and researchers places to hang other attributes that describe more
unusual interconnections.

Any description of this nature is a compromise, and topdl substrates are not ideal
for modeling all interconnectivity. However, we believe that a broad number of
useful technologies can be described currently and more will be added.

A substrate includes:

Name Function

Name Used by interface objects (below) to bind
an element to this substrate.

23

TIED Federation Plug-in Design Feb 3, 2010

Capacity A description of the maximum
information carrying capacity of this
substrate. Optional

Latency A description of the maximum latency
properties of this substrate. Optional

Attribute A list of name/value pairs that define
other properties of this substrate.

The capacity and latency properties can describe the capacity and latency either as
simple maxima or using simple statistical limits - e.g. a peak and average. As the
specification evolves we expect to add other ways to define these attributes. The
syntax of these fields is available from
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd as well.

Substrates are less specific than elements, but similar paths will be used to expand
them If need be.

3.2.3 Interfaces

Interfaces tie elements to substrates, in effect defining which elements can directly
communicate. In addition to indicating that an attachment exists, an interface can
constrain the same performance properties that a substrate defines. For example,
a substrate representing line of sight interconnectivity on a particular radio
frequency might be upper bounded by the theoretical upper bounds on that
frequency while individual interfaces on elements would reflect the limits of current
technology, or even location.

An interface is attached to one and only one element, but may be attached to
multiple substrates. This may be an appropriate way to model a system that can
transmit on multiple wavelengths on the same fiber, for example. The additional
performance bounds are applied per-interface.

An element may have multiple interfaces to the same substrate. What this means,
and indeed, whether it makes sense at all, depends on what the substrate is
modeling.

Specifically an interface includes:

Name Function

Substrate A list of substrate names to which this
interface is attached. At least one name
must appear.

24

http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd

TIED Federation Plug-in Design Feb 3, 2010

Capacity A bounding capacity in the same format
as a substrate capacity. Optional.

Latency A bounding latency in the same format
as a substrate latency. Optional.

Attributes The list of name/value pairs.

An interface is tied to an element by appearing in that element's interface property.

New interface properties can be created by attaching attributes that specific plug-
ins respect.

3.2.4 A Topdl Example

a b

Figure 7: Simple
Topology for topdl
Example

Here is a simple example of two computers connected by a link in topdl (Figure 7):

<experiment>
<substrates>
<name>1ink0</name>
<capacity>
<rate>100000</rate>
<kind>max</kind>
</capacity>
</substrates>
<elements>
<computer>
<name>a</name>
<0S>
<attribute>
<attribute>osid</attribute>
<value>F(C6-STD</value>
</attribute>

</0s>

25

http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd
http://fedd.isi.deterlab.net/svn/wsdl/trunk/topdl.xsd

TIED Federation Plug-in Design Feb 3, 2010

<interface>
<substrate>linkO</substrate>
<capacity>
<rate>100000</rate>
<kind>max</kind>
</capacity>
</interface>
</computer>
</elements>
<elements>
<computer>
<name>b</name>
<0S>
<attribute>
<attribute>osid</attribute>
<value>F(C6-STD</value>
</attribute>
</0s>
<interface>
<substrate>linkO</substrate>
<capacity>
<rate>100000</rate>
<kind>max</kind>
</capacity>
</interface>
</computer>
</elements>
</experiment>
A more complex example is available from

http://fedd.isi.deterlab.net/trac/wiki/FeddPluginArchitecture .

3.3 Services

Of the various plug-in aspects, the services architecture is the most in flux. Initial
versions of the rest of the interfaces described in this document have been tested

and used to create federated experiments, but the service factoring interface is, as
yet, a paper design.

Currently we have a simple model of services in that a given access controller
knows how to import, export or integrate a service with other instances of that

26

http://fedd.isi.deterlab.net/trac/wiki/FeddPluginArchitecture

TIED Federation Plug-in Design Feb 3, 2010

service to create testbed-wide services. Service contact points are given as URIs
and included at the various phases of experiment creation, described in Section
3.1.1. An access controller that cannot implement a service request or that is
unable to import, export, or integrate a service indicates failure to create the sub-
experiment.

This starting point buries a fair amount of semantics in the names of the service,
and we expect to make those semantics more explicit as this interface evolves. In
particular we are interested in making services composable.

4 Design Specification for the ProtoGENI Plug-in

This section describes the design of a plug-in to support ProtoGENI[1] as a TIED
federant. The ProtoGENI plug-in implements the functions of a TIED plug, and
hence allows the TIED control framework to directly access and integrate ProtoGENI-
controlled resources into a federated experiment, described in Section 3.

The ProtoGENI plug-in is the third to be developed for use with the DCA. Existing
plug-ins provide support for testbeds that export the Emulab interface, and for
DRAGON[6] networks that export an OSCARS interface[7]. These plug-ins provide
features (code) that can be re-utilized in the ProtoGENI plug-in. However, the
ProtoGENI plug-in is significantly more complex than either of the two existing plug-
ins, due to the requirement to map more complex and more heterogeneous
semantic operations to the DCA model.

The major design issues for the plug-in include:

+ How to map between global TIED authorization attributes and local ProtoGENI
identities and credentials.

* How to convert TIED topdl| descriptions into ProtoGENI RSPECs and allocate
ProtoGENI resources.

* How to interconnect with other TIED sub-experiments using ProtoGENI
testbed resources.

* How to provide TIED experiment services using ProtoGENI services and
resources cooperatively with other sub-experiments.

We discuss below how the ProtoGENI plug-in addresses each of these during
experiment creation, describe the sub-experiment termination process, and provide
a summary of how the subprocesses of experiment creation come together to give
the final result.

4.1 Coordinating TIED and ProtoGENI Authorization

There are two areas in which the TIED ProtoGENI plug-in interacts with the
ProtoGENI authorization system. These are a) mapping the TIED credentials into the
ProtoGENI user and credential mechanism, and b) managing the ProtoGENI slice
credentials used to allocate and manipulate sub-experiment resources.

27

TIED Federation Plug-in Design

Feb 3, 2010

4.1.1 Static Authorization Integration: TIED credentials to ProtoGENI user

The rights to manipulate a ProtoGENI slice are tied to user identities, and as such
the mapping from TIED request to local authority will be a mapping from TIED
attributes (ABAC or three-name) to ProtoGENI identity. One acquires a ProtoGENI
identity by registering with the ProtoGENI project? on the Utah Emulab. The TIED
developers have already registered. As part of this process, ProtoGENI issues the
user an X.509 certificate to establish the user's identity.

A ProtoGENI user can request credentials from a Slice Manager to carry out various
fine-grained operations on slices. Those operations closely follow the GENI Slice-
Based Facility Architecture (SFA). The SFA includes operations to discover
resources as well as to allocate and configure them.

To give a feel for the operations supported by ProtoGENI we list groupings that

share credential requirements:

Name

Functions

Slice Authorization: GetCredential

Acquire the credential to create a slice,
or to perform a set of operations on an
extant slice (the requested privileges are
part of the call)

Slice Information: Resolve,
DicsoverResources, GetKeys

Query the ProtoGENI system for extant
slices, available resources, and keys to
allow user access to resources
(specifically to get their registered SSH
keys)

Special Slice: BindToSlice, Shutdown

Permit another user's GetCredential
operations to succeed on this slice. Stop
a running slice.

Component: Resolve, DiscoverResources

Component-level query of names and
resources

Component: GetSliver, SliceStatus,
SliverStatus

Retrieve information about allocations
from this component manager

Component: RedeemTicket, DeleteSliver,
DeleteSLice, SplitSliver, UpdateSliver,
StartSliver

Make and edit resource allocations.

3The project is called “geni” though this disagrees with some documentation.

28

TIED Federation Plug-in Design Feb 3, 2010

While it appears that the ability to see resources and perform operations are based
primarily on credentials in ProtoGENI, these rights are rooted more strongly in the
user identity. If a user can acquire a slice manipulation credential, all privileges are
conferred to that credential, though it can be diluted to give other users fewer
rights to an existing slice. DiscoverResources is an unprivileged operation on both
slices and components, though one assumes not all users see the same results of
those calls. Basically rights are conferred based on user identity, not on
credentials.

Because user identity controls authorization in ProtoGENI, the plug-in must map the
TIED credentials on an incoming request into a local ProtoGENI user under which to
operate. Both the Emulab plug-in and DRAGON plug-in have code to effect such a
mapping, and we will employ it in the ProtoGENI plug-in as well. This binding is
expressed as a connection between the TIED credential set and the X.509
certificate representing a ProtoGENI user ID.

The mapping from TIED credentials to the ProtoGENI user that will carry out the
requests is a static configuration, established in a configuration file. For example,
all TIED users that can prove that they are vetted by GENI will allocate experiments
as ProtoGENI user “geni,” while unvetted users will act as ProtoGENI user “faber.”

When operations are requested, the plug-in dynamically acquires ProtoGENI
credentials to carry out the operations. Management of those credentials is
discussed below.

4.1.2 Dynamic ProtoGENI Credential Management

This section describes the acquisition and management of ProtoGENI credentials
through a sub-experiment's lifetime, described in Section 3.1.1.

When access to ProtoGENI is requested using a TIED AccessRequest, the plug-in
must bind the needed ProtoGENI authorization information to the new TIED
allocation ID passed in the request. Specifically, the requester's TIED credentials
map to the appropriate ProtoGENI user identifier (as described above) which is
bound to the unique TIED allocation ID.

If the AccessRequest includes a summary of required resources, the plug-in will use
ProtoGENI services to confirm that the resources requested are accessible to the
ProtoGENI user bound to the TIED allocationID.

Similarly any TIED services requested will be confirmed; we discuss service
implementation below.

Assuming that the requirements above are met, a ProtoGENI slice credential is
requested using the bound ProtoGENI user ID and the resulting credential is bound
to the TIED allocation ID as well. This credential will have all the privileges
necessary to create and manipulate the sub-experiment. Because all sub-
experiment operations will be managed by the plug-in, there will be no need to
delegate this credential.

29

TIED Federation Plug-in Design Feb 3, 2010

One more piece of authorization material is bound to the TIED allocation ID at this
time: an SSH key that the plug-in can use to remotely access general purpose
computers in the experiment. While a separate key could be generated for each
allocation, we will share one across multiple allocations. Note that the TIED user
never sees this key; it is used by the plug-in used for experiment configuration.
Part of that experiment configuration will include establishing TIED user access
through other mechanisms.

At this point, the proper ProtoGENI user and credentials are bound to the TIED
allocation ID to allow the rest of the operations to succeed. Following sections will
discuss how those operations are composed and carried out. When the sub-
experiment is terminated, the slice will be removed. When the access is
terminated, the allocation ID and bound credentials will be destroyed.

4.2 Using TIED Topology Descriptions to Allocate ProtoGENI
Resources

Resource allocation is one of the most important parts of sub-experiment creation,
but often fairly simple to implement depending on the services of the testbed; all
testbeds are in the resource allocation business to some extent. This section
discusses how we are placing the TIED plug-in into the ProtoGENI version of the SFA
control architecture now and later, how to mesh the topdl and ProtoGENI RSPEC
resource models, and the details of experiment allocation.

4.2.1 ProtoGENI's SFA and the TIED Plug-in

ProtoGENI is implementing the GENI SFA where a clearinghouse acts as a global
coordination point for identities, resources, and manager addresses. Slice Managers
potentially coordinate resources across multiple Component Managers that actually
allocate resources. The Slice Managers do most of the credential management
while the Component Managers deal with the initial configuration of resources,
including virtualization.

In principle, being a registered user of Utah's ProtoGENI site enables us to use
resources across multiple associated ProtoGENI installations represented by
separate Component Managers using the Slice Manager at Utah. In practice, the
code is new and advertised as a little shaky.

By adhering to the published Slice Manager and Component Manager interfaces, the
ProtoGENI plug-in can allocate multi-testbed sub-experiments using the SFA
interface. However, this interface is somewhat primitive in how well it embeds
topologies and how well it deals with Component Manager failures.

Creating sub-experiments across this interface would result in recreating much of
the experiment splitting and partial failure recovery that is being put in the
experiment controller here in the plug-in/access controller. This is an unattractive
prototyping strategy, so we will focus on a simple case initially.

Initial implementations of the ProtoGENI plug-in will restrict themselves to one Slice
Manager (by necessity) and one Component Manager (to simplify design). As

30

TIED Federation Plug-in Design Feb 3, 2010

ProtoGENI's tools simplify the process of dealing with multiple Component
Managers, the TIED tools will make direct use of them.

Note that it is possible to site a plug-in at each site implementing a ProtoGENI SFA
interface, and use TIED's experiment manager to create cross-testbed experiments.

4.2.2 Harmonizing Resource Representations (topdl & RSPEC)

ProtoGENI's RSPEC[8] is a lower-level description of testbed resources than the TIED
topdl representation, which matches the use of the RSPEC as a low-level resource
allocation format. RSPECs are used in three ways in ProtoGENI, with slight
distinctions made in the abstractions presented. An RSPEC can act as:

» A resource advertisement: available resources are described at hardware
level

» A resource request: a subset of resources for use is specified. See below.

* A manifest: a description of allocated resources, including dynamic
configuration decisions.

The ProtoGENI RSPEC basically breaks down into a nodes and links model of
networking. ProtoGENI nodes include both general purpose computers and network
infrastructure such as switches and firewalls. Though nodes are fundamentally
physical resources, there are conventions for requesting VMM instances within a
node. Connections between nodes and the wide-area Internet or between nodes
using Cisco GRE tunnels can also be represented.

RSPECs tend to specialize their nodes through type fields and similar notation,
where topdl would encourage sub-classing. Neither the syntax nor the model
presents great challenges in translation, though.

Request RSPECs are versions of RSPECs that allow interconnections to be described
more abstractly. The difference is between a request that specifies three
computers should be connected using specific interfaces to specific ports of one or
more switches that share a VLAN tag, and a request that three nodes share a virtual
LAN.

ProtoGENI exports a slice embedding service[9] that takes request RSPECs with
virtual connectivity requirements along with an advertisement RSPEC representing
candidate hardware. That service returns a detailed request RSPEC including the
full hardware-based layout that can be directly presented to a Component Manager
and realized. This service currently only works across resources controlled by one
Component Manager. The single Component Manager limitation is a strong
motivation behind our decision to limit plug-ins to single Component Manager
operation.

The TIED plug-in has to generate RSPECs from topdl at two places: when an
AccessRequest includes a resource summary and when a sub-experiment is started
on the ProtoGENI plug-in. At AccessRequest time, the topdl request and the
available resources RSPEC must be compared to determine if the former can ever

31

TIED Federation Plug-in Design Feb 3, 2010

be embedded in the latter. This does not require one to produce a best embedding,
just an possible embedding. When the full sub-experiment starts, a full embedding
is essential.

In both cases we plan to convert the topdl representation into an RSPEC and use the
slice embedding service to find valid allocations. If during the translation process,
we are unable to convert the topdl! into an equivalent RSPEC, that request will fail.

The conversion of topdl to RSPEC will make use of current code that converts topdl
into ns2 for Emulab-based testbeds. The ProtoGENI and Emulab resource models
are very similar when an abstract request RSPEC is being created. The differences
are only a matter of syntax, and the RSPEC format is well documented.

4.2.3 Creating a Sub-experiment

When the plug-in receives a StartSegment request from the experiment controller,
it must use the ProtoGENI credentials created in the RequestAccess operation
(described above) to allocate and configure the resources as a sub-experiment,
described in Section 3.1.2. This section deals with allocating the resources and
configuring them as a local experiment. We discuss the creation of inter-sub-
experiment connectivity and services below. Note that a sub-experiment is not
completely configured until the connectivity and services are initiated.

The topdl description is converted into a request RSPEC as described above, and the
list of available resources acquired from the Component Manager using the
ProtoGENI credentials and user identification mapped to the TIED allocation ID in
the request. Then the ProtoGENI slice embedder is used to map the request into an
embeddable RSPEC on the available resources, again using the local ProtoGENI
credentials. If no embedding is found, the StartSegment call fails.

With embeddable RSPEC in hand, the plug-in proceeds to create a ticket — the SFA's
promise of resources - from the Component Manager and then to redeem that
ticket, which allocates the actual resources. The slice is then started. These calls
are straightforward invocations of the ProtoGENI SFA with credentials and RPSECs
generated above. Of course, if either of these requests fails, the sub-experiment
startup fails.

It is worth noting that when a ticket is redeemed, a set of SSH keys can be specified
that are placed on the general purpose computing nodes, allowing later
configuration of those nodes. These keys are used below in configuring services
and connectivity in the experiment.

At this point in experiment creation, the interactions with the SFA interface are
complete, and experiment resources are laid out and locally connected. Now the
plug-in must begin stitching the sub-experiment into its place in the federated
experiment.

32

TIED Federation Plug-in Design Feb 3, 2010

4.3 Using ProtoGENI Resources To Interconnect With TIED Sub-
experiments

Current plug-ins support two connectivity mechanisms: best effort Internet
connectivity and guaranteed service via DRAGON/OSCARS. When best effort
connections are created, a gateway element is included in each sub-experiment to
encapsulate local packets at a low level and tunnel them to the peer testbed.
DRAGON interconnections provide the encapsulation themselves, so the traffic is
tunneled directly from experiment elements. The experiment controller knows
which of these are appropriate based on the global experiment topology and the
advertised capabilities of the testbeds. It adds elements to the sub-experiments as
needed. These elements and interfaces are marked with attributes in topdl
indicating their use in connectivity.

Global experiments are split between testbeds by splitting topdl substrates; topdl
elements are fully realized within one testbed. Currently the experiment controller
expects the user or user's tool to have made that split. Work is ongoing in providing
more general tools to do it.

The plug-in establishes connectivity described in the topdl using a small amount of
local topology modification and significant configuration. We describe the process
to be used in the ProtoGENI plug-in to implement the two mechanisms above and
suggest short term extensions.

4.3.1 Best Effort Connectivity

The ProtoGENI plug-in will initially provide best effort connectivity using SSH tunnels
at the link level. SSH is used because it uses a nearly universally available service
to provide basic functionality. Relying only on such a basic system allows us to
support as many testbed technologies as possible.

The experiment controller places gateway elements in the local experiment's copy
of the substrate that is split between the two experiments. When the sub-
experiment description is converted into an RSPEC, the gateway nodes are
connected to the Internet.

After the ticket is redeemed, the plug-in uses its remote access to configure the
node for link-level SSH forwarding. This process includes the following:

1. Allow remote access from the other gateway node by placing SSH public keys
into the appropriate authorization files. Keys for this are passed by the
experiment controller to the plug-in.

2. Load or enable any required kernel modules to support bridging or link level
forwarding. Our current implementation loads bridging and tunneling support
if it is not already available. These modules can be acquired from the
experiment controller using the mechanism described in Section 4.4.2.

3. Configure local routing or interfaces for Internet access. The ProtoGENI plug-
in will establish source routes to the peer and little else.

33

TIED Federation Plug-in Design Feb 3, 2010

4. The active gateway will establish the SSH tunnel between nodes and bridge
the appropriate interfaces onto it on both sides.

As step 4 implies, the experiment controller designates one of the gateway
elements as the active initiator of the connection. When the tunnel is created, the
active side picks the interface name for both sides of the tunnel, and then remotely
connects that tunnel interface to the appropriate physical interface. There is no
point in the passive end doing some of that work before the connection is made,
and resolving any naming conflicts in the tunnel interfaces is simplified by having
the active side pick them.

Our current implementation of this tunneling system is implemented on FreeBSD
and uses its vernacular for the tunnel interface names and other features.
ProtoGENI does not currently allow one to specify the operating system installed on
a computer, so we will need to port this code to the operating system that they
export (a Linux distribution). The tools are all off the shelf components, so this work
will be straightforward.

4.3.2 Dedicated Connectivity

The implementation of direct connectivity is very simple in ProtoGENI.

Guaranteed connectivity services generally provide the link level encapsulation and
other features that gateway nodes provide without the need to add additional
gateways to the sub-experiment. These are usually connected to a testbed at a
well-defined point. Often this is a particular VLAN tag or port on a switch.

In Emulab testbeds, the difficulty is piercing the node/network abstraction to
connect the experiment elements to the physical hardware providing guaranteed
service. In ProtoGENI, this is greatly simplified by the direct access to the hardware
that the RSPEC provides. The request RSPEC is doctored to include the appropriate
hardware connections when the topdl is converted into the request RSPEC, before it
is presented to the slice embedding service. The plug-in knows how to do this as
the elements are marked in the topdl and the hardware point is local configuration
state of the plug-in.

However, a stumbling block here is that DETER/TIED and Emulab/ProtoGENI do not
share either a ProtoGENI backbone access point or a DRAGON access point, making
it difficult to test this connectivity. Both groups are working to resolve the political
and logistical issues in getting the two testbeds on one wide area service offering
provisioned access, and this design will support it when available.

4.3.3 Other Connectivity Extensions

There are some other connectivity possibilities that are suggested by the ProtoGENI
system that are not in the initial development plan, but will be explored as time and
availability merit. Currently we are considering Cisco GRE tunnels and OpenVPN
encapsulation.

Cisco GRE tunnels are supported directly by ProtoGENI between components that
are connected to appropriately enabled equipment. Though DETER and other

34

TIED Federation Plug-in Design Feb 3, 2010

affiliates do not provide direct access to this encapsulation mechanism, it is a
distinct possibility to add it. It would be exported by a gateway node instead of the
least-common-denominator SSH tunnel.

Similarly, OpenVPN can be used to create VPNs in the wide area. OpenVPN is
attractive because of its more sophisticated model of a VPN. SSH treats the VPN as
a simple tunnel over TCP, while OpenVPN supports unreliable forwarding and
connection reestablishment in the face of failures. It can export the same tunneling
interface (i.e, an t un0 network interface) as SSH does, which would make a port
straightforward.

The primary issue is that OpenVPN is included in the core of fewer operating
systems than SSH, though the advantages may justify installing it dynamically.

4.4 Establishing TIED Experiment Services Using ProtoGENI
Resources

Though there are numerous differences between an Emulab and ProtoGENI,
perhaps the greatest difficulty in creating a TIED environment is how few
experimental services ProtoGENI nodes have by default. The experiment nodes are
pretty close to being vanilla Linux installations.

This different service environment is one of the motivations for our modular service
interface. Rather than predicate services on exporting an Emulab environment, we
will be providing individual services. The first set of services implemented in the
ProtoGENI plug-in will be those that were originally part of the Emulab project
export, though they will be more generally implemented and factored. We break
these down into configuration services and traditional services.

4.4.1 Configuration Services

Configuration services provide the bedrock configuration information that allow the
plug-in to configure resources so researchers can access them. The ProtoGENI SSH
key seeding as part of redeeming a ticket is a simple version of these kind of
service. Our plan is to provide a simple service that provides an initial access
environment appropriate to the element. In terms of ProtoGENI, for now, this boils
down to initializing a set of Linux accounts on each node compatible with the
traditional services we define below.

Unlike the traditional services, configuration services are accessed once by the
plug-in when the experiment is created. This sets the stage for the traditional
services to operate.

We factor configuration services out of the experiment controller to make the
configuration of experiment orthogonal to the topology creation. The same set of
user accounts can be used across multiple topologies or instances of the
experiment.

Our configuration service will provide the following information to the plug-in, which
will use a subset of it appropriate to the element being configured. For example, a

35

TIED Federation Plug-in Design Feb 3, 2010

switch may just have SSH keys added to its set of authorized keys, while a Linux-
based computer may use all of the information directly.

Name Function

Groups Standard Unix characterization of a
group. Name, numeric identifier,
members.

Users Standard minimal Unix characterization

of a user with access extensions. Name,
numeric ID, password, home directory,
command interpreter, SSH public keys,
X.509 certificates.

Mount points Characterization of any shared file
system to be used. Where to place files
systems in the standard hierarchy, the
file system to use, and other common
options.

Host map Name « IP address mappings for key
hosts

If the configuration service is present in the list of services exported to the sub-
experiment, the ProtoGENI plug-in will contact that service using a bidirectionally
authenticated SSL connection and retrieve the configuration information. When the
sub-experiment resources are allocated, the plug-in will configure the nodes
appropriately using that data. In particular, it will create the necessary groups and
user accounts on the local Linux-based machines, using the access granted by the
RedeemTicket call.

The experiment controller will have negotiated access to the configuration service
for the sub-experiment access controllers that need it.

4.4.2 Traditional Services

Providing the more traditional services is primarily a matter of forwarding
connections to the systems providing the service using service gateway elements.
A service gateway element is an analog to the connectivity gateway portals. Rather
than providing link-level forwarding, these nodes forward packets to remote
services. In practice, service gateways and connectivity gateways often physically
share a node.

Most of the services we forward are TCP services that can be directly tunneled using

SSH or similar systems. Some testbeds, like DETER, do not assign any globally
routeable addresses to experiment nodes. In such cases, the service gateways are

36

TIED Federation Plug-in Design Feb 3, 2010

necessary to allow packets outside the network at all. In other cases, firewalls or
other interpositions require their use.

While server/client port forwarding has carried us a long way, we expect that some
services will require more general network address translations. This work is
ongoing.

In the ProtoGENI plug-in, sub-experiments that import or export traditional services
will have service gateway nodes allocated to them by the experiment controller.
Before services are started on the sub-experiment nodes, the service gateway node
will be configured (using the SSH access) to forward the configured services. This
may include routing configurations similar to establishing a connectivity gateway.
Once a service gateway is configured, other experiment nodes can begin accessing
services.

Providing remote access to service providers is only half the problem of configuring
services on ProtoGENI computers. Some services configured for the experiment
may be unavailable on the standard ProtoGENI installation, and the plug-in is
responsible for installing and configuring those services.

On order to make such configurations, first the plug-in must gather the software
necessary for the service. The experiment controller will make such software
available to the plug-ins through a secure repository. This repository uses the TIED
identifier and credentials of the plug-in to control access to the service software
repository. This repository and software acquisition protocol is already
implemented in the Emulab plug-in, and its incorporation into the ProtoGENI plug-in
will be straightforward. This software acquisition is accomplished before the ticket
is redeemed.

Once the various service software has been acquired, the plug-in must install it on
the nodes that require it. In many cases this is straightforward, accomplished by
installing an RPM or tarfile. There is an extension to the request RSPEC to install
such software. In other cases it may be more complex. For example, using a
remote filesystem that is not compiled into the kernel. For some services, the
overhead of installing the service will be high enough that the plug-in will be
configured to disallow it.

To summarize, the ProtoGENI plug-in will go through three steps in starting a
traditional service:

» Acquire software for services that are not supported in the basic ProtoGENI
image from the experiment controller

+ Configure and start the service gateway node. It will forward connections
outside the testbed to the service provider.

» Install, configure, and start services on experiment nodes

37

TIED Federation Plug-in Design Feb 3, 2010

4.4.3 Initial Services Supported

The services supported by the initial ProtoGENI plug-in will be a factorization of the
existing Emulab project services. Specifically the following will be supported:

Name Description

Configuration service Export of user/group/hostname
environment.

SMB filesystem Shared filesystem that spans
experiments.

SEER experiment support and event DETER experiment control system that
system provides experiment monitoring and an
extensible event system.

These services are chosen because they represent a proven basis for a useful
experiment environment as well as a range of implementation complexity.

4.5 Termination of Sub-Experiments and ProtoGENI Access

When an experiment is terminated, the ProtoGENI DeleteSlice operation is called.
Should it fail, the Shutdown operation is invoked. At this point the credential
bindings remain in place. They can be used to populate an new slice without
making additional calls.

When the TIED RemoveAccess call is made, the credentials are unbound an
destroyed, as is the TIED allocation ID.

4.6 Plug-in Creation Control Flow

The preceding sections each focused on an aspect of sub-experiment creation to
make the challenges and implementation strategies clear. With a picture of each
subsystem in place, we walk through the entire slice creation flow of control.
« TIED RequestAccess
o TIED credentials are mapped to ProtoGENI user ID (or fail).

o ProtoGENI slice credential acquired from Slice Manager and bound to TIED
Allocation ID (the ID is in the request).

o If resource summary is included in request, translate request to Request

RSPEC and confirm resources exist using ProtoGENI Slice Embedding
Service (or fail).

38

TIED Federation Plug-in Design Feb 3, 2010

o

o

If service summary is included, confirm against static list of supported
services (or fail).

SSH key for configuration bound to TIED Allocation ID.

+ TIED StartSegment

o

o

Convert topdl description to abstract request RSPEC.

= |f direct gateways appear, link them to proper hardware in RSPEC.

= if best effort gateways appear, connect them to Internet in RSPEC.
Use ProtoGENI Slice Embedding Service to get realizable request RSPEC.

Allocate resources to sliver (using credential bound toTIED allocation ID)
using GetTicket (or fail).

Realize Resources using RedeemTicket and StartSliver (or fail).
Retrieve service software from experiment controller.

If configuration service is specified, get configuration information.
Configure connectivity gateways (if any) and start them (Stra.
Configure service gateways (if any).

Configure services on experiment nodes and restart the services.

+ TIED StopSegment

o

Call StopSlice on associated sliver (credential bound to TIED allocation ID)
and Shutdown if necessary

« TIED RemoveAccess

o

o

Delete ProtoGENI credentials

Delete TIED allocation ID

5 Summary

This document presents a functional specification for TIED plug-ins, including
detailed descriptions of the data flow and message contents that a new plug-in
must support. The document also describes the topology description language
currently in use by TIED plug-ins, outlining the important representations and
extension methods.

39

TIED Federation Plug-in Design Feb 3, 2010

In addition to textual descriptions contained in the document, links are provided to
on-line, detailed specifications for plug-in messages, interfaces, and the topology
description language.

References

[1] ProtoGENI, http://www.protogeni.net/trac/protogeni/wiki.

[2]Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad Mac
Newbold, Mike Hibler, Chad Barb, Abhijeet Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” Proceedings of OSDI,
(October 2002).

[3INinghui Li, John C. Mitchell, and William H. Winsborough, “Design of a Role-Based
Trust Management System,” in Proceedings of the 2002 IEEE Symposium on
Security and Privacy, (May, 2002).

[4] ns-2, http://nsnam.isi.edu/nsnam/index.php/Main_Page .

[5] John K. Ousterhout, “Tcl: An Embeddable Command Language,” USENIX
Conference Proceedings,Washington, D.C., (January 1990).

[6] Thomas Lehman, Jerry Sobieski, Bijan Jabbari, “DRAGON: A Framework for
Service Provisioning in Heterogeneous Grid Networks,” in IEEE Communications
Magazine, Vol. 44, no. 3, (March 2006).

[7] Chin Guok, David Robertson, Mary Thomposn, Jason Lee, Brian Tierney, and
William Johnston, “Intra and Intedomain Circuit Provisioning Using the OSCARS
Reservation System,” in Proccedings of IEEE Broadban, Connections, and
Systems (BROADNETS 2006), (October 2006).

[8] ProtoGENI RSPEC, http://www.protogeni.net/trac/protogeni/wiki/RSpec .

[9]ProtoGENI Slice Embedding Service,
http://www.protogeni.net/trac/protogeni/wiki/SlicecEmbeddingServiceAPI .

40

http://www.protogeni.net/trac/protogeni/wiki/SliceEmbeddingServiceAPI
http://www.protogeni.net/trac/protogeni/wiki/RSpec
http://nsnam.isi.edu/nsnam/index.php/Main_Page
http://www.protogeni.net/trac/protogeni/wiki

	1 Introduction
	1.1 Overview of the DETER/TIED Control Architecture
	1.2 The Role of Plug-ins in the DCA

	2 Overview of the plug-in specification
	2.1.1 Sub-Experiment Representation
	2.1.2 Service Model
	2.1.3 Support for Authorization

	3 Functional Specification of TIED/DCA plug-ins
	3.1 Message Flow
	3.1.1 Message Exchanges
	3.1.2 Messages and Operation
	Faults
	Access Request and Access Response
	StartSegmentRequest and StartSegmentResponse
	Software Downloads
	TerminateSegmentRequest and TerminateSegmentResponse
	ReleaseRequest and ReleaseResponse

	3.2 Topology Description
	3.2.1 Elements
	Initial Elements
	Expanding Elements

	3.2.2 Substrates
	3.2.3 Interfaces
	3.2.4 A Topdl Example

	3.3 Services

	4 Design Specification for the ProtoGENI Plug-in
	4.1 Coordinating TIED and ProtoGENI Authorization
	4.1.1 Static Authorization Integration: TIED credentials to ProtoGENI user
	4.1.2 Dynamic ProtoGENI Credential Management

	4.2 Using TIED Topology Descriptions to Allocate ProtoGENI Resources
	4.2.1 ProtoGENI's SFA and the TIED Plug-in
	4.2.2 Harmonizing Resource Representations (topdl & RSPEC)
	4.2.3 Creating a Sub-experiment

	4.3 Using ProtoGENI Resources To Interconnect With TIED Sub-experiments
	4.3.1 Best Effort Connectivity
	4.3.2 Dedicated Connectivity
	4.3.3 Other Connectivity Extensions

	4.4 Establishing TIED Experiment Services Using ProtoGENI Resources
	4.4.1 Configuration Services
	4.4.2 Traditional Services
	4.4.3 Initial Services Supported

	4.5 Termination of Sub-Experiments and ProtoGENI Access
	4.6 Plug-in Creation Control Flow

	5 Summary

