
GENI Monitoring Slice: Enabling Network Visibility in the GENI OpenFlow Core Network

							
[bookmark: _Toc223505258][bookmark: _Toc222304945][bookmark: _Toc222642379]Contents

1. Motivation	2
2. Approach	2
2.1 Why Use a Slice?	2
2.2 Why LAMP(perfSONAR)?	3
2.3 Network Environments for LAMP(perfSONAR)	3
3. Ideal GENI Monitoring Slice	3
3.1 Use Cases	4
	3.11 Example 1…………………………………………………………………………………...........................4
	3.12 Example 2…………………………………………………………………………………………………….4
4. Initial Deployment of the Monitoring Slice	5
 4.1 Resources Allocated to the Slice	5
4.2 Services Enabled on ProtoGENI slivers	6
4.3 Results	7
5. Issues	9
5.1 Stitching in GENI	10
5.2 Fragility of LAMP	10
6. Conclusion	11

[bookmark: _Toc299016516]

1. Motivation

GENI is a highly distributed infrastructure that constitutes multiple aggregates at geographically diverse locations. To be useful, GENI slices must be available all the time. Any outages must be detected promptly and be resolved by aggregate operators and or the GMOC. For this reason, GENI will need a flexible approach to monitor the behavior of the network and also to measure network performance. Furthermore, such an approach must facilitate troubleshooting in such a highly distributed environment. We demonstrate one such flexible approach based on principles developed by the perfSONAR-LAMP project. This approach is “GENI-centric” as it is deployed within a GENI slice.

2. Approach

A) An operator sets up a measurement slice to monitor infrastructure, e.g., GENI
 backbone with Open Flow

B) The Measurement slice may be long-term for service quality monitoring, or
 short- term to assist with troubleshooting

C) Researchers or other operators can use LAMP tools, or others that are
 compatible with I&M architecture, where data can be registered with
 the Measurement Information (Lookup) service, so that others (when
 authorized) can discover and retrieve measurement data from a
 standardized API

[bookmark: _Toc299016519]2.1 Why Use a Slice?

A) Convenience – The slice mechanism allows the seemless allocation of resources
 across multiple aggregates
	
B) Efficient – A slice can quickly be reserved and removed as necessary

C) Realism – You can often evaluate the performance of a slice with another
 “identical” slice

Issue: Robust servers (as opposed to VMs) are required to obtain accurate measurements.

2.2 Why LAMP(perfSONAR)?

A) Adapted from perfSONAR, LAMP has suite of good network measurement tools
	
B) It registers daemons in a global lookup service such that other users can find the
 data

C) LAMP provides authorization to restrict access to data

D) LAMP provides easy access to other participating LAMP-nodes through the use
 of daemons

E) Providing that LAMP nodes register their services with a global lookup service,
 they can also run performance tests with other perfSONAR nodes

2.3 Network Environments for LAMP(perfSONAR)
LAMP can be used in Layer 2 or Layer 3 networks. However, we used LAMP to monitor the OpenFlow L2 backbone core. To date, several perfSONAR nodes exist in Internet2’s (I2) core network. These nodes are publicly available, through the Global Lookup Service, for L3 tests with other such non-I2 perfSONAR nodes with a network path to I2’s network. As such, LAMP should provide mechanisms to test against these perfSONAR nodes (i.e. perfSONAR nodes external to a slice). This LAMP-perfSONAR integration removes the need for GENI sites to acquire dedicated hardware for monitoring segments of the network not directly connected to the OpenFlow backbone.
3. Ideal GENI Monitoring Slice
The ideal GENI monitoring slice will contain resources from the dominant GENI control frameworks namely ProtoGENI, PlanetLab, and OpenFlow. Figure 2-1 provides a conceptual view of such a slice. In particular, it constitutes ProtoGENI nodes from the respective testbeds in Utah and the GPO, a PlanetLab node from the PlanetLab subaggregate at the GPO, and OpenFlow resources from Internet2’s and NLR’s aggregates.
The ProtoGENI resources will host the LAMP I&M services and data. Specifically, the LAMP node at Utah will host the LAMP web portal, among other services, while the PlanetLab node at the GPO lab will host the NOX controller for all OpenFlow switches in the core. These switches will facilitate schedule tests between ProtoGENI nodes labeled PC UTAH 1, 2, 3, and PC GPOLAB. A server at the University of Delaware hosts the Unified Network Information Service (UNIS). UNIS is a combination of the topology and lookup service that stores the topology data. In particular, LAMP services are configured through the LAMP web portal, and the updated topology pushed to UNIS. The perfSONAR-PS pSConfig service running on each node fetches the updated configurations.

[image:]

Figure 2-1 Panoramic vision for the GENI monitoring slice
3.1 Use Cases

Below are a few use cases for such a monitoring slice.

 3.1.1 Example 1
An operator of the GENI backbone network sets up a long-term backbone measurement slice to monitor service quality, and shares data with GMOC via LAMP (perfSONAR) API.

3.1.2 Example 2
Experimenters complain to GMOC about intermittent backbone connectivity outages between Sites X, Y and Z. GMOC sets up a short-term reference measurement slice involving Sites X, Y and Z, and shares data with Experimenters.

[bookmark: _Toc299016521]4. Initial Deployment of the Monitoring Slice

Ideally, one envisions the GENI monitoring slice as a single container of resources that envelopes resources from the three control frameworks mentioned previously. To date, this configuration does not exist as GENI is still in the infantile stages, where dynamic stitching of resources across aggregates of diverse control frameworks is concerned. For this reason, we created a slice to contain the OpenFlow resources and a second slice to contain the ProtoGENI nodes.

What about a third slice to contain the PlanetLab node? Furthermore, what about the ProtoGENI switches displayed in Figure 2-1? First of all, we could have created a third slice to host the OpenFlow controller (and technically, we did). However, we simply spawned an instance of a NOX OpenFlow controller on a PlanetLab host which existed within the PlanetLab slice of an operator. Secondly, the ProtoGENI switches at the cross connects were added to the ProtoGENI rspec as “dummy” nodes. The actual details of this setup can be viewed from the following links:

· How to create the ProtoGENI slice http://groups.geni.net/syseng/wiki/AliSandbox/Create%20a%20ProtoGENI%20Slice
· How to create the OpenFlow slice http://groups.geni.net/syseng/wiki/AliSandbox/Create%20an%20OpenFlow%20Slice
· How to access the LAMP web portal http://groups.geni.net/syseng/wiki/AliSandbox/Access%20the%20LAMP%20Web%20Portal

4.1 Resources Allocated to the Slice
The initial deployment encountered challenges from all fronts which resulted in the use of only a subset of the resources shown in Figure 2-1. These challenges will be presented in the Discussion section.

Figure 4-1 depicts the current resources existing in the monitoring slice. In particular, it contains three ProtoGENI nodes, four OpenFlow switches, two ProtoGENI switches and one PlanetLab node. The LAMP node hosts the LAMP web portal, stores statistics in local round-robin databases, and exports the metrics collected by the host monitoring collector using the SNMP measurement archive (MA) interface. The two ProtoGENI hosts facilitate scheduled performance and measurement tests, and the PlanetLab node at the GPO lab hosts the NOX controller for all Internet2 switches.

[image:]
Figure 4-1. Resources allocated for the first-cut deployment of the monitoring slice

4.2 Services Enabled on ProtoGENI nodes

Table 4-1 lists the LAMP services enabled on each respective ProtoGENI node. Services such as perfSONAR-BOUY Regular testing is enabled on both PC UTAH 1 and 2. This is necessary to conduct throughput tests between nodes. This is also the case for the ping and delay tests.

Table 4-1. LAMP service enabled on nodes
	Services
	Nodes

	Bandwidth Test Controller (BWCTL)
	 : PC UTAH 1 : PC UTAH 2

	Host Monitoring Collector(Ganglia Meta Daemon)
	LAMP host : :

	Host Monitoring Daemon(Ganglia Monitoring Daemon)
	 : PC UTAH 1 : PC UTAH 2

	Ganglia Measurement Archive
	LAMP host : :

	LAMP I&M System Portal
	LAMP host : :

	NTP Server
	LAMP host : PC UTAH 1 : PC UTAH 2

	One-Way Ping (OWAMP)
	 : PC UTAH 1 : PC UTAH 2

	perfSONAR-BOUY Regular testing (Throughput)
	 : PC UTAH 1 : PC UTAH 2

	perfSONAR-BOUY Measurement Archive
	 : PC UTAH 1 : PC UTAH 2

	perfSONAR-BOUY Regular testing (One-Way-Latency)
	 : PC UTAH 1 : PC UTAH 2

	PingER Measurement Archive and Regular Tester
	 : PC UTAH 1 : PC UTAH 2

4.3 Results

Figure 4-2 shows the result of a scheduled ping test between PC UTAH 1 and PC UTAH 2. As shown, the round-trip-time between the two hosts, over the given Internet2 OpenFlow backbone switches and ION circuits is approximately 197ms. Similarly, Figure 4-3 shows the one-way-delay from PC UTAH 1 to PC UTAH 2. The one-way-delay measurement is important where asymmetric routes are concerned.

[image:]

Figure 4-2 Results of a scheduled ping test at 2 hour intervals

[image:]

Figure 4-3 Results of a scheduled One-Way-Delay test at 2 hour intervals

Figure 4-4 illustrates the throughput results for an hourly scheduled TCP test. The results show an average throughput of ~37Mbps. However, using UDP, a throughput test such that the bandwidth is restricted to 100Mbps results in an average throughput of ~ 98Mbps. These results highlight a networking issue where TCP is concerned. From a GENI use-case perspective, assuming an experimenter developed a TCP service or application requiring a bandwidth greater than 37Mbps, this application would most likely fail. However, should a reference slice be available, this experimenter could refer to the throughput results and realize the root of their problem.
[image:]

Figure 4-4 Results of an hourly test for the month of August

5. Issues

There are two ongoing issues with deploying the monitoring slice: 1) GENI’s current inability to dynamically stitch resources of aggregates from different control frameworks and 2) the fragility of the LAMP framework.

5.1 Stitching in GENI

To date, GENI has yet to realize an efficient stitching mechanism between OpenFlow and ProtoGENI resources. First of all, the ProtoGENI software suite is unable to dynamically allocate VLANs through the ProtoGENI and OpenFlow switches through the respective cross connects. For this reason, we experienced a minor broadcast storm at the initial stages of obtaining network connectivity in the OpenFlow core network. Ultimately, a combined, one-week, “manual” effort of operators at Utah, Internet2, and the GPO, was necessary to provide network connectivity between PC UTAH 1 and PC UTAH 2. The time-to-completion for this process was somewhat satisfactory since few GENI users require such complex configuration of resources. However, as GENI “ramps-up” the scale of experiments, it will be crucial for ProtoGENI and OpenFlow operators to converge on a dynamic stitching mechanism.
5.2 Fragility of LAMP
This project has challenged the robustness of the LAMP project and stirred remarkable interest in the LAMP development community to revisit and perhaps re-engineer mechanisms within the LAMP software suite. Prior to this project, and over the past year since its deployment, LAMP was not used significantly by experimenters. For this reason, several “bugs” were encountered and resolved. However, a few issues still exist. In particular, LAMP does not support version 2 rspec, which GENI intends to support by GEC12. For this reason, the network topology, from our initial experiments with rspec version 2, was not registered at the Unified Network Information Service (UNIS) controller.

At the onset of this project, Flack was used to generate the rspec for the ProtoGENI-LAMP resources. During this time, flack only supported version 2 rspecs(Currently, Flack is able to create version 0.1 and 0.2 rspec). Among other issues, this forced manual creation of the resource manifest submitted to UNIS. One other issue relates to throughput tests. For example, the throughput results for a test scheduled almost two weeks ago is unavailable through the web portal.

LAMP, like perfSONAR, is dependent on good servers and not VMs in the measurement slice for accurate networking measurements. For this reason, several services such as the throughput daemons, are dependent on the synchronization of NTP prior to initialization. Obviously, there exists a work around such that this NTP dependency is disabled. However, the results obtained are not guaranteed to be accurate.

Finally, there exists a bug which surfaces when adding the LAMP Ubuntu 9.1 image to Emulab sites. This is one of the main reasons why we were unable to deploy LAMP on a ProtoGENI node at the GPO lab. The LAMP developers are currently addressing these issues in addition to creating a new LAMP image which supports Ubuntu 10.04.

6. Conclusion

This work considered the continual I&M strides towards monitoring GENI. We introduced the concept of an ideal reference slice to monitor the GENI OpenFlow backbone core network. This slice contained resources from the OpenFlow, ProtoGENI, and PlanetLab aggregates. We provided one approach to develop the monitoring slice and subsequently executed a first-cut deployment on a subset of resources detailed in Figure 2-1 of the ideal monitoring slice. Our initial results demonstrate the potential for success in such an undertaking. Additionally, we discuss vital setbacks which must be addressed to realize the ideal monitoring GENI slice.

5
19 Aug 2011 	www.geni.net Version 1.0.0
image2.jpeg

image3.png

image4.png

image5.png

image1.jpeg

