Service-centric networking
with SCAFFOLD

Michael J. Freedman
Princeton University

with Matvey Arye, Prem Gopalan, Steven Ko,
Erik Nordstrom, Jen Rexford, and David Shue

From a host-centric architecture

HAWAN

STAN’?‘

°0P-10
PDP-10
POP-11

FPS AP-1208)

MOFFETT

ARPANET LOGICAL MAP, MARCH 1977

[POP-0

From a host-centric architecture

[Poe-11] [oec-

2050] [PLURIBUS]

[PoP-10

D

POP-1

[360/67)

POP-N

POP-I1

AMES IS
AMES 16

POP-10

POP 10
SKi 2

SRS
POP- 11

PDP -1

X0 i)

A
joec-10s0}

;oo-ll
POP -1
POP - 11

ANL

cocggool [pop -]
£0C6600 — LBL UTAM ILLINOIS
—") '8,

PDP-10

vy

NOVA - 800

[POP-10]

PARC MAXC2

SUMEX

UNIVAC 108
H716

)Y YMSHARE @
370/19%
FNWC
] |
-

»—1““‘ /b3

[S;PDP -n I

o

>

Q
RCC
50 [Zroei]
SPS-41
POP-N

CDCEE00
POP-11_
COCT600
COCB600
POP-I1

)BEN 40

8-4700
PP -1

MARVAR
POP- 1
POP- 10
PDP- 10

BELVOIR
360/44
360/40

PLURIBUS

ITR

] ABEROEEN |

NSA
ARPA
POP-1

POP -

[por-18]

PDP-10

T~PDP- Il
NYU
UNIVAC-1108
“PDP-11

RUTGERS T55F-11

EGLIN

[xcP

POP-11

O e
0 e

Ly

O
AFWL TEXAS

O PLURIBUS IMP
v SATELLITE CGIRCUIT

L
GUNTER

'® s
EGLIN

PDP-N

CDC6600

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE,NO CLAIM CAN BE MADE FOR ITS ACCURACY)

[Por7]
)
3607195
GEC 4080

ICL470

CDCE400
€0C 6600
CDC 7600

From a host-centric architecture

! ...ﬂ .*ﬂ qAﬂ cﬂ“_ ‘l

\
1

AU RN RN t

el (EH U
1 ’ W

,] »

L AR VAT L S R A

“.1,:...«_..:......11

)

Q
S
>
i)
O
0,
=
-
O
S
(O
@
o
i)
C
Q
T
Q
O
>
-
Q
Vp)
(O
O
_I

To a service-centric architecture

» Users want services, agnostic of actual host/location

* Service operators need: replica selection / load
balancing, replica registration, liveness monitoring,

failover, migration, ...

Hacks to fake service-centrism today

Layer 4/7: DNS with small TTLs
HTTP redirects
_ayer-7 switching

Layer 3: IP addresses and IP anycast
Inter/intra routing updates

Layer 2: VIP/DIP load balancers
VRRP, ARP spoofing

+ Home-brewed registration, configuration, monitoring, ...

To a service-centric architecture

» Users want services, agnostic of actual host/location

* Service operators need: replica selection / load
balancing, replica registration, liveness monitoring,
failover, migration, ...

e Service-level anycast as basic network primitive

Two high-level questions

 Moderate vision: Can network support aid self-
configuration for replicated services?

* Big vision: Should “service-centric networking”
become the new thin waist of Internet?

Naming as a “thin waist”

* Host-centric design: Traditionally one IP per NIC

— Load balancing, failover, and mobility complicates
— Now: virtual IPs, virtual MACs, ...

* Content-centric architecture: Unique ID per data object
— DONA (Berkeley), CCN (PARC), ...

e SCAFFOLD: Unique ID per group of processes
— Each member must individually provide full group functionality

— Group can vary in size, distributed over LAN or WAN

Object granularity can vary by service

Fixed Bit-length
SCAFFOLD
ObjectID

jl[w w - Google You Tube Service

K-bit Admin Prefix Machine-readable Object|D

ﬁz_ “Somewhere — S S
over the rainbow” oogle —"“Somewhere” video

facebook . Facebook Partition 243

Memcache Partition

Comcast Mike's Laptop

SCAFFOLD as ...

— Clean slate design

— Multi-datacenter architecture for
single administrative domain

 Deployed over legacy networks

 Few / no modifications to applications

Target: Single administrative domain

Backbone

\\\\ Y —

'/\ﬁq

Datacenter management more unified, simple, centralized
Host OS net-imaged and can be fork-lift upgraded
Already struggling to provide scalability and service-centrism

Cloud computing lessen importance of fixed, physical hosts

Goals for Service-Centrism

 Handling replicated services
— Control over replica selection among groups
— Control of network resources shared between groups

— Handling dynamics among group membership and deployments

 Handling churn
— Flexibility: From sessions, to hosts, to datacenters
— Robustness: Largely hide from applications
— Scalability: Local changes shouldn’t need to update global info
— Scalability: Churn shouldn’t require per-client state in network

— Efficiency: Wide-area migration shouldn’t require tunneling

Clean-Slate Design

Principles of SCAFFOLD

Service-level naming exposed to network
Anycast with flow affinity as basic primitive

Migration and failover through address remapping

— Addresses bound to physical locations (aggregatable)
— Flows identified by each endpoint, not pairwise
— Control through in-band signalling; stateless forwarders

4. Minimize visibility of churn for scalability
— Different addr’s for different scopes (successive refinement)

Tighter host-network integration

— Allowing hosts / service instances to dynamically update network

Principles of SCAFFOLD

1. Service-level naming exposed to network

2. Anycast with flow affinity as basic primitive

Principles of SCAFFOLD

1. Service-level naming exposed to network

2. Anycast with flow affinity as basic primitive

SCAFFOLD address

Admin Prefix Object Name -_-

ObjectID FlowID

(i) Resolve ObjectlID to an instance FlowLabel
(ii) Route on instance FlowLabel to the destination

(iii) Subsequent flow packets use same FlowLabel

Principles of SCAFFOLD

1. Service-level naming exposed to network

2. Anycast with flow affinity as basic primitive

SCAFFOLD address

Admin Prefix Object Name -_-

ObjectID FlowID

Decoupled flow identifiers

ObjectID | Flow Labels SocketID

Who Where Which conversation

3. Migration and failover through address remapping

4. Minimize visibility of churn for scalability

SCAFFOLD address

ObjectID |Flow Labels SocketlD ObjectID |Flow Labels SocketID

Src FlowlID Dst FlowlID

Manage migration / failover through
in-band address remapping

ObjectID =L EPI SocketID

hich conversation

(i) Local end-point changes location, assigned new address
(ii) Existing connections signal new address to remote end-points

(iii) Remote network stack updated, application unaware

SCAFFOLD address

ObjectID |Flow Labels SocketlD ObjectID |Flow Labels SocketID

Src FlowlID Dst FlowlID

Minimize visibility of churn through
successive refinement

ObjectID SRl 1581 SocketID

Wide-Area

Minimize visibility of churn through
successive refinement

Scalability: — Local churn only updates local state
— Addresses remain hierarchical

Info hiding: Topology not globally exposed

SRC LocalHost Safari Client --- >> 10 40
DST Google YouTube Svc /\/—\ plo

Multiple levels 5
of refinement

—

SS 4 Wide-Area

Arbitrary Subnet /
Address Structure

Integrated service-host-network management

Network
Controller

Obiject

Resolution
~ Router

netlink up join (2)
netlink down leave (2)

bind (fd, A) register (A, 2)

close (fd) unregister (A, 2)

Integrated service-host-network management

Self-configuration + adaptive to churn

Network
Controller

Obiject

Resolution
- Router

netlink up join (2)
netlink down leave (2)

bind (fd, A) register (A, 2)

close (fd) unregister (A, 2)

Using SCAFFOLD:

Network-level protocols
and network support

Application’s network API

Today (IP / BSD sockets) SCAFFOLD

fd = open(); fd = open();

Datagram: Unbound datagram:
sendto (IP:port, data) sendto (objectID, data)

Stream: Bound datagram:

connect (fd, IP:port) connect (fd, objectID)
send (fd, data); send (fd, data);

IP: Application sees network, network doesn’t see app
SCAFFOLD: Network sees app, app doesn’t see network

Unbound Flows

Object Router

Half-Bound Flows

Object Router -

join
bind(B)
sendto (

SRC ' B - 0
ObjectID [Flow Label Socket/D DST A 0

DATA

Bound Flows

Object Router -
connect()- '

Tellg
bind(B)
listen()

Bound Flows

connect(B)

Tellg
bind(B)
listen()

Connection
Bound

* Applications bind on object-level names
e Network forwards on resolved addresses

Supporting Mobility and Migration

Label Router 3 Object Router

SRC
DST

SRC
DST

Connection
Migrated

Supporting Failover and Load Shedding

Object Router -

Supporting Failover and Load Shedding

Object Router -

* Decoupled id’s enable in-band migration and recovery

* Flow affinity without per-flow state in the network

Extent of changes

v Change socket layer + stack

v/ Change the packet format bl onio S5 HesE| socko

v’ Change in-network support Network Object
Controller Router

Yet:
v Can run on top of legacy networks (IP and Ethernet)

v Few/easy/no changes to applications

Backwards Compatibility

Hide physical location from app

Today (IP / BSD sockets) SCAFFOLD

fd = open(); fd = open();

Datagram: Unbound datagram:
sendto (IP:port, data) sendto (objectID, data)

Stream: Bound datagram:

connect (fd, IP:port) connect (fd, objectID)
send (fd, data); send (fd, data);

Current applications
— iperf, TFTP, PowerDNS

SCAFFOLD network stack

IPC
Application | €=> Application

Linux sockets interface

Network interfaces
IP packets

Network interfaces

Operating across legacy networks

SRC LocalHost Safari Client ---
DST Google YouTube Svc ‘_.

E‘MM SS 10

Wide-Area

&
(Anycasted) '

IP Address / Prefix

—

40
20

Arbitrary Subnet /
Address Structure

Routing over legacy networks

Current In Development

Ethernet Ethernet

Addr: 8b SS|8b Host|16b sock

Port: 16b objlD SCAFFOL[:\

In-Network support

Network ~_ NOXapplication:
Controller topology, host, object management

Object _ Modified OpenFlow software switch for
Router proportional split routing/resolution

Network
Controller

Router

“Evaluation”

Demos

* Load Shedding:

— Call close() on connections

— Subsequent packets get FAIL, then reconnect

* Client mobility

TFTP transfer with Client Mobility

-

e

—— Client

interface down

| nterfaceup __ _ __

Client Leaves Client Reconnects (RSYN)

TFTP transfer with Failover

—

(0]
o
o

<100 ms blip

~~
(2]
o
O
X
N
-t
-
Q.
L
O
-
o
—
L
l—

L) L] L] L] -
ey
\. .
o .
L]

. -
"

—— Server1.
Server 2 ;

8 10
Time (s)

Server 1 (FAIL) Server 2 (FAIL)

Current throughput

send rate
recv rate

o)
o O

7))
Qo
@)
=3
)
e
©
p -
>
O
O
o
~~
©
C
O
0p)

50 100 150 200 250 300 350
|Perf input rate (Mbps)

Current implementation is both user/kernel space.
Ongoing development to either/or.

Service-centric networking

 Moderate vision: Can network support aid self-
configuration for replicated services?

* Big vision: Should “service-centric networking”
become the new thin waist of Internet?

SCAFFOLD rethinks:

1. Naming exposed to network and applications
2. Extent of host-network integration

3. Role of dumb/stateless network vs. end-hosts

Service-centric networking
with SCAFFOLD

Michael J. Freedman
Princeton University

with Matvey Arye, Prem Gopalan, Steven Ko,
Erik Nordstrom, Jen Rexford, and David Shue

Latency of API calls

Method

Task

Mean
s

Stdev
s

connect sf
bind sf
send sf
send sf
listen sf
close sf
close sf

Obiject resolution and handshake
Register an object with Controller
Send 18 byte payload to Scafd
Send 1472 byte payload to Scafd
Set listening within Scafd

Send FIN, and receive FIN-ACK
Close socket on receiving RST

2925.00
3069.40
69.21
56.95
80.4
600.30
14.80

494.18
141.58
20.84
23.76
5.28
285.51
3.68

Network vs. stack latency

K receive latency
K send latency
K receive latency
K send latency

Related Work

Paradigm Object Content| Object
Layer 30 3/4 3/4 3/4

Anycast Prox Mcast Res
Resolution Routed DDiff | SRefine

Migration Yes* Yes* Yes

Faillover Yes Yes Yes

Related Work

Topology

Arbrtrary

Arbrtrary

Fat-tree

Fat-tree

Multipath

Any

Many

ECMP

ECMP

Migration

Yes

Yes*

Yes*

Yes*

Fallover

AES

No

No

No

Traffic Engineering

Arbrtrary

Oblivious

Oblivious

Oblivious

Server Selection

Yes

ek

No*

No*

Use CoT%?

No

Yes

No

AES

End-host Mod

Yes

AES

No

AES

