
OpenFlow Deployment 

Vjeko Brajkovic
Arvind Krishnamurthy

University of Washington



Deployment Setting

• 6 floor CSE building

• 8 subnets available on each floor

• Aggregated at the basement and connected to a router

• Building has duplicate (mostly unused) network machine 
rooms in each floor

• Next to the production wired network run by campus 
network

• Vertically stacked across floors

• Preexisting spare (unused) conduit for research network

• spare cable ducts and wall sockets



Current Status

• Deployed OpenFlow for students in the networks lab

• HP Procurve 6600 with OpenFlow 0.89

• NOX, FlowVisor, SNAC, but no SFA

• Separate VLANs: production traffic, experimental traffic, 
management traffic, and public non-OpenFlow

• Demonstrated the Plug-n-Serve system spanning UW 
and Stanford



Future Plan

• 2-4 Openflow switches on 2 to 3 floors

• Aggregated at the basement

• Either transition into the campus production network

• Or use 10GigE dark fiber link to the Pacific GigaPoP

• Opt-in deployment

• Initially, graduate students and faculty in systems/networking 
(ten to twenty users by GEC-8)

• Wireless access point in undergrad CS labs

• Later expanded to the entire department (transition to being 
the production network)



Research Testbed

• Augment OpenFlow switches with Intel RouteBricks 
(software programmable router)

• RouteBricks can be a stand-in for “middleboxes”

• Enable research on where functionality should be placed 
in the network:

• What should be in the lightweight OF switch?

• What should be in a middlebox?

• What should be at the edge (end-hosts)?



Our Research Agenda
“End to the Middle”

• Can we eliminate middleboxes altogether?

• caches, traffic shapers, firewalls, IDSs, NATs, VPNs, proxies, 
load balancers, and so on

• Can they be mostly implemented in commodity 
hardware at the edge?

• Built a research prototype where NAT, IDS, QoS 
functionality is at the edge

• OpenFlow switches serve as network substrate

• Trusted Boot stack leverages TPM support

• RADIUS server support for validating TPM attestations



Why?

• Transparency: open source software on commodity 
hardware

• Cost: lower barrier for small networks

• Pervasiveness: no longer point solutions

• Scalability: e.g., if you want DPI, have it scale at the edge

• Reliability and failover: replicated state machines at the 
edge



Why now?

• Multicores on end-hosts: extra resources with 
performance isolation

• Virtual machines: protection and portability

• TPMs: attestations from commodity PCs



Example: NAT

• Calls to bind/listen 
invoke distributed 
coordination

• Agree (using paxos) on 
port leases

• Packets forwarding:

• Use OpenFlow or

• Deliver to any live host, 
then forwarded

LAN

1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State

1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State

1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State

1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State
1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State

1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State

1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State
1.2.3.4:80 => 192.168.1.4:8080

1.2.3.4:1337 => 192.168.1.5:1337

1.2.3.4:5336 => 192.168.1.2:6464

1.2.3.4:22 => 192.168.1.3:22

Network State

External IP: 1.2.3.5

Internal IP: 192.168.1.1


