Plug-n-Serve: Load-Balancing Web Traffic using OpenFlow

Nikhil Handigol*, Srinivasan Seetharamant, Mario Flajslik*, Nick McKeown*, Ramesh Johari*

* Stanford University, Palo Alto, CA USA
T Deutsche Telekom R&D Lab, Los Altos, CA USA

ABSTRACT

Effective load-balancing systems for services hosted in un-
structured networks need to take into account both the con-
gestion of the network and the load on the servers. In this
demonstration, we illustrate a comprehensive load-balancing
solution that works well for such networks. The system we
showcase, called Plug-n-Serve, tries to minimize response
time by controlling the load on the network and the servers
using customized flow routing.

The demonstration shows how the Plug-n-Serve system
works within our deployment in the CS building at Stanford
University. Besides the base behavior, we show the effect of
dynamically adding and removing computing resources to
the system, increasing the request arrival rate, altering the
CPU or network load of each request, and changing load-
balancing algorithms.

Categories and Subject Descriptors: C.2.2 — Computer
Systems Organization [Computer-Communication Net-
works]: Network Architecture and Design; C.4 — Computer
Systems Organization [Performance of Systems]

General Terms:
Management, Design, Experimentation

Keywords:
Load balancing, OpenFlow, Architecture, Unstructured

1. MOTIVATION

It is common for a large web sites to balance load over
many HTTP servers, and there exist commercial products
to do this [Il 2]. Load-balancing may be oblivious (e.g.,
spreading the requests equally over all servers, without re-
gard for their load), or stateful (e.g., sending requests to
the least-loaded server). In a data-center or a dedicated
web-hosting service, the HT'TP servers are connected by a
regular, over-provisioned network; the load-balancer usually
does not consider the network state when load-balancing
aCross servers.

However, this simplistic scenario does not hold for un-
structured networks, such as enterprise and campus net-
works, that are not custom-built for running server farms.
In such unstructured networks, the substantial background
traffic and the potential topological biases can significantly
affect the performance of network-oblivious load-balancing
(our baseline), and inflate the response time (defined as the
duration from issuing the HTTP request to the complete
receipt of the response).

In our work, we ask the question: “If we simply add many

O Oblivious Request Rate é
O Stateful Greedy Request Type % -
® LOBUS CPU Bandwidih < Time

Figure 1: The frontend GUI shows the up-to-date
state of the system and allows the user to control
various parameters. The state of each server can be
toggled by clicking. OpenFlow channels requests to
different servers, or through different paths to the
same server.

HTTP servers to our own enterprise or campus network, re-
gardless of its topology, what is the best way to balance load
S0 as to minimize the client response time?”. In particular,
we take into account both the congestion of the network and
the load on the servers, and, then, control the load on the
network and the servers to try to minimize response time.
We demonstrate a load-balancer, called Plug-n-Serve, that
load-balances over arbitrary unstructured networks, and
tries to minimize the average response time. The system al-
lows operators to increase the capacity of the web service by
simply plugging in computing resources and switches in an
arbitrary manner. In response, the Plug-n-Serve controller
implementing an integrated optimization algorithm we de-
veloped, called LOBUS (LOad-Balancing over UnStructured
networks), automatically expands its view of the network,
and appropriately shares the load over the added devices.

2. DEMONSTRATION

Our demonstration presents Plug-n-Serve in action in the
Gates Computer Science Building at Stanford University.



Web servers are randomly spread across an OpenFlow net-
work [4]. The network, which is also used by production traf-
fic, consists of a heterogeneous mix of commercial switches
from Cisco, HP and NEC in addition to the Net FPGA-based
ones. The OpenFlow switches [6] are remotely controlled by
a NOX-based Plug-n-Serve controller that runs on a sepa-
rate PC [3] [5]. HTTP-based client requests are generated
by several PCs within the Gates network.

In our demonstration, we show the performance of
LOBUS and compare it with that of oblivious and state-
ful load-balancing approaches. Figure [Il shows a snapshot
of the frontend GUI provided by Plug-n-Serve. It captures
three main aspects of the system, namely:

e Up-to-date state of the overall system: The load on
the servers, and the congestion of the network links
and switches.

e The average response time for the requests as a time-
series.

e The effect of dynamically adding or removing servers
and network links on response time.

The GUI allows us to vary the request arrival rate. We can
also vary the work brought by each new request, based on
whether the request adds more load to the CPU (e.g. com-
putation intensive requests) or to the network (e.g. for high
bandwidth data from the servers, such as video). Lastly, the
GUI allows us to change the load-balancing algorithm.

3. DESIGN AND IMPLEMENTATION

All servers used in the demonstration are assigned the
same [P alias. When a request arrives for the server IP
address, the controller decides which server to route it to
and the path it should take. Once a flow has been allocated
to a server, all the packets in the flow are forwarded at line-
rate to that server by the datapath of one or more deployed
switches.

To implement this, Plug-n-Serve does the following:

e It determines the current state of the network and the
servers, including the network topology, network con-
gestion, and load on the servers.

e It chooses the appropriate server to direct requests to,
and controls the path taken by packets in the network,
so as to minimize the response time.

We use the newly proposed OpenFlow architecture to
measure the state of the network, and to directly control
the paths taken by new HTTP requests. OpenFlow is an
open routing platform which provides vendor-independent
means to control the way switches route traffic. The Plug-
n-Serve controller is capable of managing a large network of
switches and servers.

To allocate web requests, Plug-n-Serve relies on the fol-
lowing three functional units, as illustrated in Figure

e Flow Manager: This module is an OpenFlow con-
troller that manages and routes flows based on the
specific load-balancing algorithm chosen. This con-
troller also handles the necessary Layer 2 protocols
(viz., DHCP, ARP, STP). The LOBUS algorithm is
implemented in this module.

OpenFlow
controller

Network

State CPU

Feedback

Network of

Content X
@ Requests OpenFlow switches
E—
=
Figure 2: The main control logic of Plug-n-Serve,

implemented as an OpenFlow controller, consists of
three functional units.

e Net Manager: This module is responsible for probing
the network, and keeping track of the network topol-
ogy and its utilization levels. It queries switches pe-
riodically to get link usage and monitors the latency
experienced by packets traversing the links.

e Host Manager: This component monitors the state
and load at individual servers in the system, and re-
ports it to the Flow Manager. It also detects new
servers plugged into the load-balancer system.

4. CONCLUDING REMARKS

We showcase Plug-n-Serve, an Open-Flow based server
load-balancing system that effectively reduces response time
of web services in unstructured networks built with cheap
commodity hardware. Using OpenFlow to keep track of
state and to control the routes allows the system to be easily
reconfigured; the network operator, thus, can add or remove
capacity by turning hosts on or off, and add or remove path
diversity by turning switches on or off. The demonstration,
with its many tunable options, provides insights into the
effectiveness of the LOBUS algorithm we developed. Fur-
thermore, it allows us to identify and understand scenar-
ios where it is beneficial to have information of the network
topology and the level of background load on the resources.

S. REFERENCES

[1] Foundry ServerIron Load Balancer. http://www.
foundrynet. com/products/webswitches/serveriron/.

[2] Microsoft’s Network Load Balancing. http://technet.
microsoft.com/en-us/library/bb742455. aspx.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an operating
system for networks. In ACM SIGCOMM Computer
Communication Review, July 2008.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 38(2):69-74,
April 2008.

[5] NOX - An OpenFlow Controller. http://www.noxrepo.org,

[6] The OpenFlow Switch Consortium. http://www.
openflowswitch. org.


http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://technet.microsoft.com/en-us/library/bb742455.aspx
http://technet.microsoft.com/en-us/library/bb742455.aspx
http://www.noxrepo.org
http://www.openflowswitch.org
http://www.openflowswitch.org

	Motivation
	Demonstration
	Design and Implementation
	Concluding Remarks
	References

