Load Balancing Approach for Adaptive Bitrate Streaming in ICN

Divyashri Bhat, Cong Wang, Amr Rizk, Michael Zink June 16th, 2015

Motivation

- Load balancing is inherent in the NDN paradigm as content is populated and cached on router nodes across the network.
- In contrast, load balancing in TCP/IP networks is often carried out using dedicated infrastructure in the sense of TCP termination points and load balancing schedulers.
- NDN comes with organic load balancing

Motivation

Load Balancing

• L_B – Interests will be dropped

Simulation

- ndnSIM 2.0, based on NS-3
 - Delay=10ms, capacity=10Mbps for all links besides $R_i - S_i$.
- $R_i S_i$ capacity=5Mbps, output queue=50 frames
- Default LRU cache (20 contents max.)
- 10 independent clients on $R_{5'}$ 100 interests per second
- $L_p = 0, L_B = 1$
- Crosstraffic C₁, C₂, Poisson process, 500pps

- Remove right branch for 1 server case
- *R*₁-*S*₁ capacity 10
 Mbps

Caching

Segment retrieval
 time = reception
 of content - send
 of interest request

Interests Sent

MM Streaming Performance over NDN

- Measurements performed in actual GENI testbed
- Impact of content size
- Estimating available bandwidth
- NDN over Ethernet

Oscillation

- Multi-sourcing content
- Disjoint paths
- Cache size = 80 contents
- Segment = 167 contents
- Segment transfer times are smeared average of oscillating content transfer times

Conclusion

- Investigated load balancing in NDN
- Substantially reduces segment retrieval time
- Real-world testbed experiments of native NDN over Ethernet
- Two-layered version of oscillation problem in case of multi-sourcing