
pud

NSF grants CNS-1017092, CNS-1117536 and
CRI-1305237

In-Network Dynamic Pathlet Switching with VIRO for SDN Networks

Braulio Dumba, Hesham Mekky, Guobao Sun, Zhi-Li Zhang
Department of Computer Science, University of Minnesota-Twin Cities, MN, 55455

This project is supported in part by a Raytheon/NSF subcontract 9500012169/CNS-1346688, the NSF grants CNS-1017092, CNS-1117536 and CRI-1305237, and the DTRA grant HDTRA1- 09-1-0050.

VIRO-GENI NODE

VIRO PACKET FORMAT

IMPLEMENTATION OF VIRO IN GENI

 Management Plane : VIRO remote
controller is responsible for the
following tasks:
 topology discovery/maintenance

(host/switch added/removed)

 Vid assignment

 ARP and DHCP Requests

 IP/VID Mapping (Global View)

 Control Plane: VIRO local
controllers are responsible for the
following tasks:
 MAC/VID Mapping (Local View)

 Populate Routing Table

 Insert forwarding rules for the first
packet of any flow

CONTROL PLANES

 OVS Daemon:
 Translation between IP packets/VIRO

packets (EtherType, Forwarding
Directive)

 Insert rules for routing at Kernel

 OVS Kernel:
 Translation between IP packets/VIRO

packets (End-Host)

 Forwarding IP packets among local
machines

 Forwarding VIRO packets

DATA PLANE

IN-NETWORK DYNAMIC PATHLET SWITCHING FRAMEWORK

EXPERIMENTS

VIRO

Local POX

VIRO Controller

Management

Plane

Data

Plane

Control Plane

OVS
Daemon

OVS Kernel

VIRO

Remote POX

Open vSwitch

VIRO-GENI Node

 Current Solutions:

 QoS mechanisms

 Overlay networks or stub networks

 Multi-path TCP (mpTCP)

 Limitations of current solutions:

 QoS mechanisms are difficult to
deploy widely and add extra
complexity in the network

 All the other solutions are end-
system (or stub network)-based
and therefore do not have explicit
information regarding the path
diversity available in the network

MOTIVATION

 In-network pathlet switching is a mechanism that allows network devices (e.g. routers, switches) to
dynamically switch among several paths to a destination based on their performance

 To achieve in-network pathlet switching the following conditions need to be met:

a) Performance information of the current path and all the alternative paths in the network

b) Mechanism and/or component responsible for making the path switching decision inside the
network

 We carry out experiments to investigate the potential benefits of in-network pathlet switching with VIRO and
compared it against MPTCP:

 Using the Abilene network a client in Seattle communicates with a server in New York

 The network tool iperf is used to generate traffic from client to sever for 150 seconds

 We use openFlow rules into OVS switches to set-up all the paths in our experiments

 Estimate per level gateway
throughput

 Periodically report gateway
throughput information to the
Remote controller and
Rendezvous Point

 Query upper-level gateway’s
throughput information from
the rendezvous point

Bucket
Distance

Next hop Gateway

1 Chicago Indianapolis

2 Kansas City Indianapolis

3 Atlanta Indianapolis

4 Kansas City Kansas City

 In this experiment the client at
Seattle communicates with a
server in New York

 The link Indianapolis-Chicago is
throttle from 40Mbits/sec to
10Mbits/sec

 Path before switching:

Seattle -> Denver -> Kansas City ->
Indianapolis -> Atlanta ->
Washington D.C -> New York

 Path after switching:

Seattle -> Denver -> Kansas City ->
Indianapolis -> Chicago ->

New York (Pathlet Switching)

Bucket
Distance

Next hop Gateway

1 Chicago Indianapolis

2 Kansas City Indianapolis

3 Chicago Chicago

4 Kansas City Kansas City

Routing Table for node Indianapolis

(After path-switching)

 MPTCP with disjoint TCP sub-flows paths
provides the best throughput

 MPTCP performs poorly and provides results
similar to the traditional TCP, when the TCP
sub-flows share a congested link

 VIRO provides comparable results to MPTCP
when the TCP sub-flows share congested links

Viro: Virtual id routing protocol

D
B

G C
E F

A

Virtual ID Layer

IPv4/IPv6

Layer 2 Physical Network

Topology

Other App Namespaces

F C ABE D G

D
B

G CE
F A

 Inspired by Kademlia DHT

 but need to build end-to-end connectivity/routes!

 Bottom-up, round-by-round process

 round 0: neighbor discovery

 discover and find directly/locally connected neighbors

 round k (1<= k <=L):

 build routing entry to reach one’s own level-k sub-tree

– a list of one or more (gateway, next-hops)

 use “publish-query” (rendezvous) mechanisms
Logical Distance: Height of the nearest common parent in the binary tree.

Sub-tree: Set of nodes with in a given logical distance.

Rendezvous Point: a node that store gateway information to reach specific levels

in the vid space.

Gateway: A node in SubTree(k-1,x) which is connected to a node in Bucket(k,x) is

a gateway to reach Bucket(k) for node x.

VIRO Routing

D

B

G C

E
F

A

100

110 111

101 000

011

010

Bucket
Distance

Next hop Gateway

1 D C

2 B C

3 D D

VIRO Routing Table for node A

(Round 3)

 The connectivity information
store at a rendezvous point (rdv):
[level, gateways list]

 Each rdv also maintains a list of
the nodes using its list of
gateways:{(GWx: nodex, nodey);
(Gwy: nodeK, nodez); ..}

a) In-Network Pathlet Switching with VIRO

b) Path Switching with MPTCP

Routing Table for node Indianapolis

(Before path-switching)

 In this experiment the client at Seattle
communicates with a server in New York
using MPTCP, we throttle the links

from 40Mbits/sec to 10Mbits/sec

 MPTCP Disjoint Paths: throttle the link
Indianapolis-Chicago

a) Seattle-> Denver -> Kansas City ->
Indianapolis -> Chicago -> -> New York

b) Seattle-> Sunnyvale -> Los Angeles ->
Houston -> Atlanta -> Washington D.C ->
New York

 MPTCP Joint Paths Disjoint Link: :
throttle the link Indianapolis-Atlanta

a) Seattle-> Denver -> Kansas City ->
Indianapolis -> Atlanta -> Washington D.C
-> New York

b) Seattle-> Sunnyvale -> Los Angeles->
Houston -> Atlanta -> Washington D.C ->
New York

 MPTCP Joint Paths joint Link: throttle
the link Atlanta-Washington D.C

a) Seattle-> Denver -> Kansas City ->
Indianapolis -> Atlanta -> Washington D.C
-> New York

b) Seattle-> Sunnyvale -> Los Angeles->
Houston -> Atlanta -> Washington D.C ->
New York

 The conventional best-effort IP protocol cannot
readily provide the bandwidth and other service
guarantees required by many of today’s multimedia
applications

Video Teleconferencing

VoIP

Multimedia

Streaming

Online GamesOnline TV

 Project Goal: we propose a novel in-network
pathlet switching framework for SDN networks
using the VIRO routing protocol to fully exploit
the path diversity available in the networks

 Maintains a global view of the
network

 Receives the list of gateways from the
rendezvous point in the network

 Coordinate with the local controller
and rendezvous point in order to
initiate path switching in the network

 Maintains a list of gateways
and their throughput
information for some levels in
the binary tree

 Send gateway failure
notifications for the nodes
using the gateways in its
rendezvous store

 Reply to gateway query
message from the local
controller

Pathlet switching Components

VIRO Remote Controller

VIRO Local Controller VIRO Rendezvous Point

