GENI Network Stitching

Architecture and Implementation Status

GEC12
November 2, 2011

Tom Lehman (USC/ISI)
Xi Yang (USC/ISI)
Stitching Architecture

- Stitching Extensions identify Inter-Aggregate TouchPoints
- Topology Service allows construction of the global interconnected Aggregate space
- Computation results can feed Tree or Chain provisioning operations
Stitching Architecture

Stitching Purpose
Provide the ability to provision inter-aggregate network connections as part of multi-aggregate Slice instantiations

- Five Architecture Components
 - Stitching Schema
 - Stitching Topology Service
 - Stitching Path Computation Function
 - Stitching Workflow Function
 - GENI AM API Stitching Extensions
GEC10 Stitching Summary

• Reviewed GENI Stitching Architecture
 – Stitching Schema
 – Stitching Topology Service
 – Stitching Path Computation Function
 – Stitching Workflow Function
 – GENI AM API Stitching Extensions

• Agreed to move forward with Stitching Architecture and work on details
GEC11 Stitching Summary

• Reviewed GENI Stitching Schema
 – hpn.east.isi.edu/rspec/ext/stitch/0.1/stitch-schema.xsd

• Demonstration showing implementation of the following:
 – Advertisement RSpec including Stitching Extensions
 – Multi-Aggregate Stitching between ProtoGENI AM, Internet2 ION AM, MAX Gigapop AM
 – OMNI Client based Tree Mode Workflow Function
GEC11 Stitching Summary

• Identified next key focus areas:
 – Define AM API Extensions for negotiation
 – Develop enhanced Tree Mode Workflow using AM API negotiation feature
 – Deploy a "production" AM for Internet2 ION
 – Develop prototype Chain Mode Workflow
 • AM to AM messaging
 • Using AM API negotiation feature
 – Add more Aggregates into the Stitching Capable AM infrastructure
Stitching Status as of GEC 12

- Stitching Architecture Complete
- Stitching Schema Available
 - hpn.east isi edu/rspec/ext/stitch/0.1/stitch-schema.xsd
- ProtoGENI AM Advertisement RSpecs include Stitching Extension
- MAX AM supports stitching (uses native MAX RSpecs currently)
- Prototype Internet2 ION AM available
 - supports stitching
 - uses native MAX RSpecs currently
 - evaluating options to deploy in operational mode
- Tree Mode Workflow available in OMNI1.4 (separate library)
Stitching Next Steps

• AM API extensions (negotiation)
 – utilize the proposed AM API Ticket base messaging or CreateSliver with options argument

• Tree Mode Workflow
 – enhanced version based on negotiation features

• Chain Mode Workflow
 – stitching based on AM to AM interactions

• Operational Internet2 ION AM (with Stitching)
Stitching Next Steps

• MAX and ION Aggregate Manager
 – Support ProtoGENIv2 RSpec formats
 – Support enhanced GENI AM API

• Topology Service

• Stitching Path Computation Service

• AM Scheduled Services
The End
Thank-you!
The Following slides are extras
Stitching Architecture and Schema Review
Stitching Schema

- Stitching schema based on Dynamic Circuit Network (ION, IDC, OSCARS) schemas and perfSONAR Topology Service schemas
- Some adjustments for GENI Aggregate specific considerations
- Two goals are
 - maximize interoperation with existing and future dynamic networking deployments
 - provide opportunities to leverage existing perfSONAR systems and software
Stitching Schema

http://hpn.east.isi.edu/rspec/ext/stitch/0.1/stitch-schema.xsd
Stitching Schema

• aggregate element
 – used by Aggregate Managers in Advertisement RSpec to describe inter-aggregate touch points

• path element
 – used in Request to indicate stitching preferences and/or requirements
 • may be fed by path computation or simply client preferences
 – used in Manifest RSpec to describe stitching of instantiated slice

• Stitching schema available as an extension to ProtoGENIv2 RSpec Schemas
Hops can be loose or strict
Hops can be specified at the aggregate, node, port, or link level
Manifests will look similar to Requests (annotated with instantiated info)
• Hops can be loose or strict
• Hops can be specified at the aggregate, node, port, or link level
• Manifests will look similar to Requests (annotated with instantiated info)
Request RSpec Example


```xml
<rspec xsi:schemaLocation="http://www.protogeni.net/resources/rspec/2 http://www.protogeni.net/resources/rspec/2/request.xsd" type="request">
  <node client_id="left" component_manager_id="urn:publicid:IDN+emulab.net+authority+cm" exclusive="true"/>
  <node client_id="right" component_id="urn:publicid:IDN+dragon.maxgigapop.net+node+planetlab2"
        component_manager_id="urn:publicid:IDN+dragon.maxgigapop.net+authority+cm" exclusive="true"/>
  <link client_id="mylink"/>
  <stitching lastUpdateTime="20110220:09:30:21">
    <path id="mylink">
      <hop id="1" type="strict">
        <link id="urn:publicid:IDN+emulab.net+interface+*:*"></link>
        <nextHop>2</nextHop>
      </hop>
      <hop id="2" type="strict">
        <link id="urn:publicid:IDN+emulab.net+interface+procure-pgeni-salt:eth0:ion"></link>
        <nextHop>3</nextHop>
      </hop>
      <hop id="3" type="strict">
        <link id="urn:publicid:IDN+ion.internet2.edu+interface+rtr.salt:ge-7/1/2:protogeni"></link>
        <nextHop>4</nextHop>
      </hop>
      <hop id="4" type="strict">
        <link id="urn:publicid:IDN+ion.internet2.edu+interface+rtr.newy:xo-0/0:3:*"></link>
        <nextHop>5</nextHop>
      </hop>
      <hop id="5" type="strict">
        <link id="urn:publicid:IDN+dragon.maxgigapop.net+interface+clpk:1/2:3:*"></link>
        <nextHop>6</nextHop>
      </hop>
      <hop id="6" type="strict">
        <link id="urn:publicid:IDN+dragon.maxgigapop.net+interface+planetlab2.eth1"></link>
        <nextHop>null</nextHop>
      </hop>
    </path>
  </stitching>
</rspec>
```
Stitching Architecture Information

- **Overview:** geni.dragon.maxgigapop.net → Network Stitching
- **Architecture:** geni.maxgigapop.net/twiki/bin/view/GENI/NetworkStitching
- **Stitching Schema Examples:**
 geni.maxgigapop.net/twiki/bin/view/GENI/NetworkStitchingRpecsandWorkFlow
- **WorkFlow Example:** geni.maxgigapop.net/twiki/bin/view/GENI/
 NetworkStitchingWorkFlowExamples
- **GENI Wiki:** http://groups.geni.net/geni/wiki/GeniNetworkStitching
Architecture Components

• **Stitching Schema**
 – provides mechanism to define and describe inter-aggregate touch points
 – implemented as an extension to ProtoGENIv2 Schemas
 – Intent is that Aggregate Managers will use this as part of Advertisement RSPEC
 – also includes stitching path elements intended to be used as part of request and stitching operations
Architecture Components

- **Stitching Topology Service**
 - collects Stitching RSPECs from all GENI AMs
 - Allows the building of larger views (global if desired) of inter-connected GENI AM space

- **Stitching Path Computation Function**
 - has the ability to obtain the global network stitching topology view from the Stitching Topology Service, perform slice instantiation specific path computations
Architecture Components

• **Stitching Workflow Function**
 – has the ability to take the path computations results and execute the workflow steps required to accomplish network stitching. This includes interacting with the specific AM APIs and external network resources

• **GENI AM API Stitching Extensions**
 – extensions to the GENI AM API to support robust and globally scalable network stitching functions.
Stitching Architecture
Next Steps
How Does Current Implementation and Demonstration Capability Relate to Stitching Architecture?

Stitching Architecture Components:
- RSPEC Stitching Extensions
- Stitching Topology Service
- Stitching Path Computation
- Stitching Workflow
- AM API Stitching Extensions

Stitching Topology Service

- Advertisements RSPACs w/ Stitching Extensions
- Stitching Path Computation
- Stitching Workflow

Client Desired Slice Topology

Path Computation functions accomplished by manual interpretation of Advertisement RSPECs

Very Preliminary Tree Mode Stitching Workflow Function Developed. Coordination amongst multiple Aggregates using OMNI Client for AM communications. Leverages VLAN Translation on ION.

Future Work:
- Chain Mode Stitching Workflow
- Tree Mode Stitching Workflow
- AM API Stitching Extensions (negotiation features)
- Aggregate Manager Future Scheduling Capabilities?
- Topology Service
- Slice Computation Service
Stitching Next Steps

• Tree Mode Workflow
• Chain Mode Workflow
• AM API extensions (negotiation)
• Topology Service
• Stitching Path Computation Service
• AM Scheduled Services
Stitching Next Steps

• Tree Mode Stitching Workflow
 – the tree mode logic is built into the Stitching Workflow function
 – Stitching Workflow function can inspect AMAdvertisements and Request RSspecs do a lot now using the existing AM API
 – However, adding a "negotiation" feature to the AM API would help in many situations
Stitching Next Steps

• Chain Mode Stitching Workflow
 – the chain mode logic is built into the Aggregate Manager
 – this will require extensions to AM API for AM to AM messaging.
 – This also includes a "negotiation" feature.

• Chain Mode and Tree Mode use the same Advertisement and Request RSpecs
 – can also use the same AM API extension for "negotiation"
AM API Negotiation

• AM API Extension for Negotiation
 – It is anticipated that the Ticket additions to AM API will be utilized as the basis for negotiation. This may require some options to indicate when service negotiation should be invoked.
 – Negotiated services will include request/responses which are similar to non-negotiated services, except the return may include items like a "range of vlans that are available for use" and one "suggested vlan" which will be held for a specific amount of time.
AM API Negotiation

• AM API Extension for Negotiation (cont'd)
 – Tree Mode Workflows will use this to tailor requests to subsequent AMs
 – Chain Mode Workflows will use this as part of AM to AM messaging which will work their way down and back up the chain as "vlan range" and "suggested vlan" fields are modified along the way
 – This is a vlan based description, can also be used for negotiation of any other resources in the schema as well
1. CreateSliver Request, negotiatedservices=on, stitchingmode=tree, vlan=any

2. CreateSliver Response, vlanRangeAvailability=3003-3015, suggestedVLANRange=3005

3. CreateSliver Request, negotiatedservices=on, stitchingmode=tree, vlanRangeAvailability=3003-3015, suggestedVLANRange=3005

4. CreateSliver Response, vlanRangeAvailability=3004-3010, suggestedVLANRange=3005

5. CreateSliver Response, negotiatedservices=on, stitchingmode=chain, vlanRangeAvailability=3004-3010, suggestedVLANRange=3010

6. CreateSliver Response, vlanRangeAvailability=3007-3009, suggestedVLANRange=3009

7. CreateSliver Request, negotiatedservices=off, stitchingmode=tree, vlanRangeAvailability=3009, suggestedVLANRange=3009

8. CreateSliver Request, negotiatedservices=off, stitchingmode=tree, vlanRangeAvailability=3009, suggestedVLANRange=3009

9. CreateSliver Request, negotiatedservices=off, stitchingmode=tree, vlanRangeAvailability=3009, suggestedVLANRange=3009
Chain Mode Stitching Workflow with Negotiation

This example based on a modified CreateSliver with Options, it may be modified to utilize the Get Ticket/Redeem Ticket paradigm

1. CreateSliver Request, negotiatedservices=off, stitchingmode=chain, vlan=any
2. CreateSliver Request, negotiatedservices=on, stitchingmode=chain, vlanRangeAvailability=3003-3015, suggestedVLANRange=3005
3. CreateSliver Request, negotiatedservices=on, stitchingmode=chain, vlanRangeAvailability=3004-3010, suggestedVLANRange=3005
4. CreateSliver Response, negotiatedservices=off, stitchingmode=chain, vlanRangeAvailability=3009, suggestedVLANRange=3009
5. CreateSliver Response, negotiatedservices=off, stitchingmode=chain, vlanRangeAvailability=3009, suggestedVLANRange=3009
6. CreateSliver Response, negotiatedservices=off, stitchingmode=chain, vlanRangeAvailability=3009, suggestedVLANRange=3009
Topology Service - Next Steps

• Topology Service
 – Deploying a "GENI Topology Service" as persistent infrastructure item would be convenient for user to explore the interconnected global Aggregate Space
 – could be based on modified perfSONAR topology service
 • populated by AM Advertisement RSpecs
 • provides basis for visualization of global GENI space
 – may not be necessary for large aggregates/control frameworks with their own advertisement aggregation and computation capabilities
Computation Service - Next Steps

• Computation Service
 – Deploying a "GENI Computation Service" as persistent infrastructure item would be convenient for user to get specific options to seed their Sliver Requests
 – could be based on modified IDC computation service
 • uses information from the Topology service
 – may not be necessary for large aggregates/control frameworks with their own advertisement aggregation and computation capabilities
Stitching Path Global ID

• Stitching schema path element has a `<globalId>` element
• the intent of this element is to define an instance specific globally unique reference for a stitching path which cross multiple aggregates
• recommended format is aggregateid-serviceinstanceid, where
 – aggregateid (DNS style name)
 – serviceinstanceid: a number generated by the aggregate, which is unique within the scope of that aggregate.
Stitching Path Global ID

• construction of this element can be as follows:
 – chain mode: the first aggregate in the chain creates using its globally unique namespace
 – tree mode: the workflow manager needs to have globally unique namespace to manage (perhaps its domain id if has one) and can then create the globalId
 – hybrid mode: the workflow manager will create globalId for the tree sections of the path, and keep track of the globalId created by the chain sections, and associate them all with a single slice instantiation.