

Survey of Available GENI Resources

Aaron Falk GENI Project Office 15 March 2011

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Introduction

- GENI has a diverse, rapidly growing set of resources – mostly prototypes – available for experimenter use
 - Compute resources: VM, hosts, cloud
 - Network resources: programmable switches, routers, & wireless

A GENI 'slice' can interconnect any of them using a range of connectivity options

GENI is Young

- These are early days with limited or inconsistent...
 - Availability, Reach, Scope, Tool integration
 - Changing rapidly, expect improvements in coming weeks and months
- The GPO is committed to helping experimenters identify, acquire, & connect the resources they need
 - Email: help@geni.net to get started

In the Pipeline

- As GENI matures, we expect to enhance those capabilities of greatest use.
 - GENI Racks on dozens, then 100's of campuses
 - OpenFlow deployments on dozens, then 100's of campuses
 - Wireless networks, including WiMax
 - Programmable network devices throughout the network
 - Real users able to directly join (i.e., opt-in) experiments
 - Deep and ubiquitous instrumentation and measurement
- Standard APIs will permit common tools to help with resource discovery, orchestration, distributed debugging, and experiment management across a range of technologies

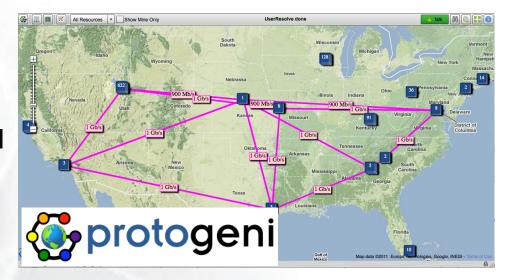
Experiment Planning

- When planning a GENI experiment, consider what kind of resources you need and how they should interconnect
 - Resources (e.g., computation, storage, programmable network devices) are provided by GENI Aggregates
- Connectivity between aggregates comes in roughly four flavors
 - L2: Layer 2 (Ethernet VLANs)
 - OF: GPO-engineered OpenFlow Network (traffic flowspec &/or programmable switch controller)
 - IP: GPO-engineered IP
 - Internet

Subject to availability, an experiment can include any resource in any location using any connectivity

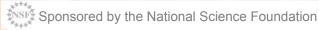
- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Compute Resources in GENI (highlights)


PlanetLab

- Global testbed of user-mode VMs on the Internet
- myPLC: local PlanetLabs often with 'interesting' connectivity options

ProtoGENI


- Emulab-based compute clusters
- Experimenters get choice of OS; root access; local topology control
- Rapidly evolving tools for WAN topology control

GENI-enabled Compute Nodes: PlanetLab & MyPLC

Aggregate	Count	Location	Avail?	Connectivity		ivity	
				Internet	IP	L2	OF
PlanetLab	1000+ nodes at 500+ sites	Global	Y	Y			
MyPLC at BBN	3	Cambridge, MA	Y	Y	Υ	Y	Y
MyPLC at Washington	2	Seattle, WA	BE	Y	Υ	Y	Y
MyPLC at Stanford	3	Palo Alto, CA	BE	Y	Υ	Y	Y
MyPLC at Georgia Tech	2	Atlanta, GA	BE	Y	Υ	Y	Y
MyPLC at Clemson	2	Clemson, SC	BE	Y	Υ	Y	Y
MyPLC at Indiana Univ.	?	Indianapolis, IN	BE	Y	Υ	Y	Y
MyPLC at Wisconsin	2	Madison, WI	BE	Y	Υ	Y	Y
MyPLC at Kansas State	6	Manhattan, KS	BE	Y	S	S	S

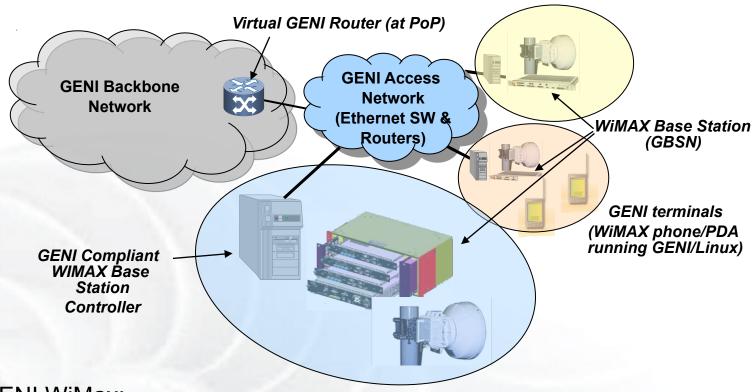
GENI-enabled Compute Nodes: ProtoGENI

Aggregate Count Location		Location	Avail?		Connectivity				
				Internet	IP	L2	OF		
ProtoGENI cluster: Utah	~600	Salt Lake City, UT	Y	Y	Y	Y			
ProtoGENI cluster: Internet2 backbone	18	LA, Kansas City, Houston, DC, Atlanta	Y	Y	Y	Y			
Wide Area ProtoGENI nodes	10	Clemson, Georgia Tech, Stanford, Rutgers	BE	Y	Y	Y	Y		
ProtoGENI cluster: BBN	11	Cambridge, MA	Y	Y	Υ	Y	Y		
ProtoGENI cluster: UMass- Lowell	8	Lowell, MA	BE	Y	Y	Y	Y		
ProtoGENI cluster: Kentucky	26	Lexington, KY	Y	Y	Y	Y			
ProtoGENI cluster: FIU	3	Miami, FL	BE	Y	Υ	Υ			
ProtoGENI cluster: LONI	2	Baton Rouge, LA	BE	Y	Υ	Y			
ProtoGENI cluster: Wisc	38	Madison, WI	BE	Y					

Other GENI-enabled Programmable **Systems**

Aggregate	Count	Location	Avail?	Co	nnect	ivity	
				Internet	IP	L2	OF
Seattle GENI P2P hosting platform on home/office computers	4000+ installs	U of Washington and volunteer participants	Y	Y			
Supercharged PlanetLab Platform High-speed programmable router	5 nodes	St. Louis, Salt Lake City, Kansas City, DC, Atlanta	Y	Y	Y		
Programmable Edge Node Virtual router	1 node	U of Massachusetts, Lowell	Y	Y	Y	Y	Υ
GENI Cloud / Transcloud Distributed Eucalyptus cluster	100 cpus	HP, UCSD, Kaiserslautern, Northwestern	Y	Y	Y	S	
DETER Compute cluster for security research	200 nodes	Los Angeles, CA	BP	Y			
BGP Multiplexer Buffered interface to global routing	4	Wisconsin, GaTech, Princeton, and Clemson	BE	Y			
Data Intensive Cloud Amazon EC2, S3, EBS Services	variable	Via UMass Amherst	BP	Y			

Outline


- Introduction
- Resources
 - Compute & Programmable Systems

GEC10: March 15, 2011

- Wireless
- Networks
- Tools
- Getting access
- Wrap-up

GENI Programmable WiMax Base Stations

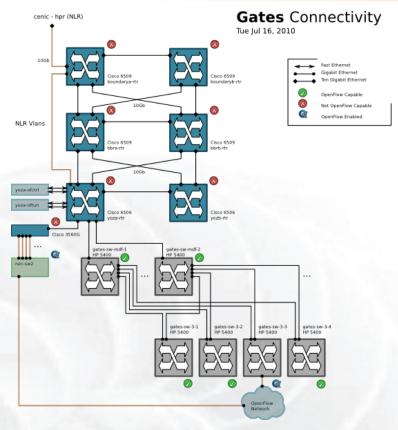
GFNI WiMax:

- Commercial IEEE 802.16e WiMAX base station with virtualization & open, programmable interfaces
- Deployed on campuses (4 up now, 4 in deployment)
- Works with commercial clients & handsets
- Good resource for mobility & vehicular experiments

GENI-enabled Wireless Systems (WiMax & others)

Aggregate	Count	Location	Avail?	Connectivity			
				Inter- net	IP	L2	OF
Rutgers WiMax Network	1 base station	New Brunswick, NJ	BP	Y			
BBN WiMax	1 base station	Cambridge, MA	BP	Y	S	S	S
NYU Poly WiMax	1 base station	Brooklyn, NY	S	Y			
UCLA WiMax	1 base station	Los Angeles, CA	S	Y			
ORBIT Large 802.11 Testbed w/ rich tools	400 nodes	New Brunswick, NJ	Y	Y	Y	Υ	Y
Kansei Sensor Testbed	96 nodes	Columbus, OH	Y	Y			
CMU Wireless Channel Emulator FPGA-based, Real-time	11 nodes	Pittsburgh, PA	Y	Y			
ViSE Steerable weather radar	3 nodes	Amherst, MA	Y	Y	Y	Υ	
DOME VMs on networked city buses	35 nodes	Amherst, MA	Y	Y			

Outline


- Introduction
- Resources
 - Compute & Programmable Systems

GEC10: March 15, 2011

- Wireless
- Networks
- Tools
- Getting access
- Wrap-up

OpenFlow Campus: Stanford GENI Network

Layer 3 connections Layer 3 connections via NLR PacketNet NLR CENIC CENIC ISP - OAK boundary{a,b}-rtr (2 x Cisco 6509s) (2 x Cisco 6509s) Stanford OpenFlow network Anything that does Layer 2 switching uses the switch Anyming that coes Layer 2 switching uses the switch toon, even if it also does some IP routing.
 Anything that does only IP routing uses the router icon.
 A VLAN trunk link between two switches is labeled with the VLAN it carries ("VLANS N – M").
 A VLAN access port is labeled with the VLAN it's on Stanford ("vlan n"). The GENI default data plane path is highighted in blue Last modified 2010-03-15

- OpenFlow production traffic now
- OpenFlow 1.0 ref implementation now
- · Early integration with campus trials HP, NEC, Toroki, Quanta, and OpenWRT switches
- OF sw devel/sActiveport

Nick McKeown, Pl

Guru Parulkar

GENI-enabled Networks

Many systems mentioned elsewhere also include network resources

Aggregate	Location	Avail?	Connectivity				
			Internet	IP	L2	OF	
Internet2 Backbone	LA, Houston, Atlanta, DC, New York	Y	Y	Y	Y	Υ	
National Lambda Rail Backbone	Seattle, Sunnyvale, Denver, Chicago, Atlanta	Y	Y	Y	Y	Y	
Regional Networks	E.g., CENIC, SOX, NOX, BEN, LONI	Y	Y	Y	Y	S	
GpENI	Various locations in KS, MO, Europe	Y	Y		S	S	
ProtoGENI Internet2 network	LA, Kansas City, Houston, DC, Atlanta	Y	Y	Υ	Υ		
BBN OpenFlow	Cambridge, MA	Y	Y	Y	Y	Y	
Stanford Campus OpenFlow	Palo Alto, CA	Y	Y	Υ	Υ	Υ	
U Washington OpenFlow	Seattle, WA		Y	Y	Y	Y	
U. Wisconsin OpenFlow	Madison, WI		Y	Υ	Υ	Υ	
Indiana OpenFlow	Indianapolis, IN (2 campuses)	Y	Y	Y	Υ	Υ	
Rutgers OpenFlow	New Brunswick, NJ	Y	Y		Y	Υ	
Clemson Campus OpenFlow	Clemson, SC	Y	Y	Y	Υ	Υ	
Georgia Tech OpenFlow	Atlanta, GA	Y	Y	Y	Υ	Υ	

Outline

- Introduction
- Resources
 - Compute & Programmable Systems

GEC10: March 15, 2011

- Wireless
- Networks
- Tools
- Getting access
- Wrap-up

Gush: Experiment Control Tool

Nebula, a graphical front end to Gush, showing PlanetLab nodes available to an experimenter.

> Nebula, a graphical front end to Gush, showing the status of an experiment controlled by Gush.

Gush, a command line based experiment control tool

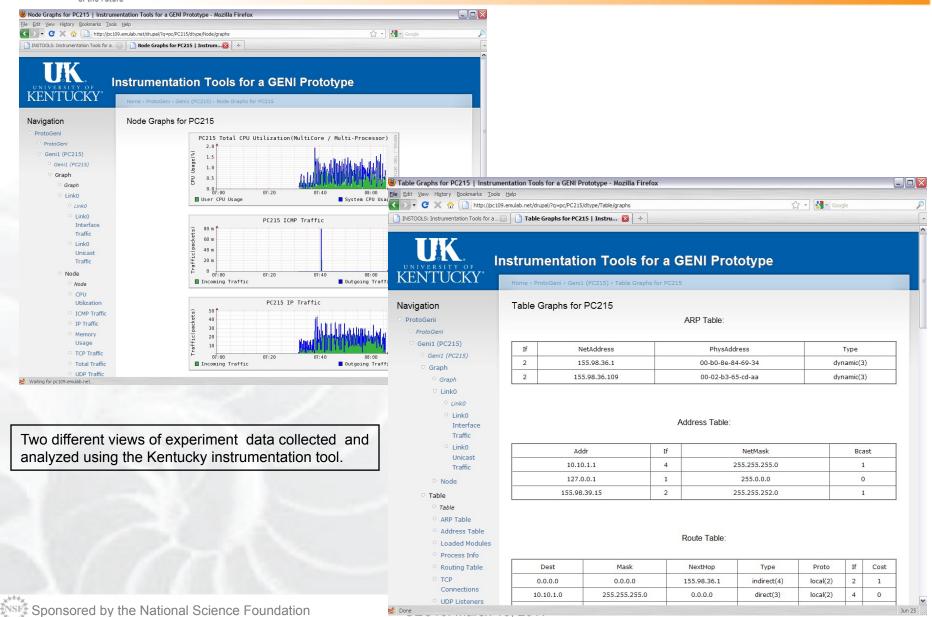
File Edit Gush Mission Run Application Disconnect 🖺 Software 📗 Component 🐼 Process 🁪 Barrier gush-gush- prefer williams gush- prefer ucsd gush- prefer planetlab1 gushgush-gush- load tests/simple.xml Project "simple" is selected. Experiment "simple" is selected. guithguithguithguithguithguithguithguithguithBurning experiment run.
Starting experiment size dar.
Burning experim

Experiment Controller State(Bok495dd9):


**Experiment Simple Croller: journielpsynet:15000
Component: Cluster1 Controller: journielpsynet:15000
Component: Cluster1 Controller: journielpsynet:15000
Component: requests 2 hosts:
Component requests 2 hosts:
Component requests 2 hosts:
Williams_pushBolmentidil.cod.dai:15413: running;
Williams_pushBolmentidil.cod.dai:15413: running;
Williams_pushBolmentidil.cod.dai:15413: running;
Num not Folidd:
Process: cot
Controller: Status:
Controller: Status:
Williams_pushBolmentidil.cod.dai:15413: done;
Williams_pushBolmentidil.cod.dai:15413: done;
Williams_pushBolmentidil.cod.dai:15413: done;
Williams_pushBolmentidil.cod.dai:15413: done; gush disconnect gush edistribut. williams, edu;15413 : done;
gush disconnect gush williams, gusheplanetidd. williams, gusheplanetidd. williams, gusheplanetidd. wild. ind. gushe []

ProtoGENI Map Client

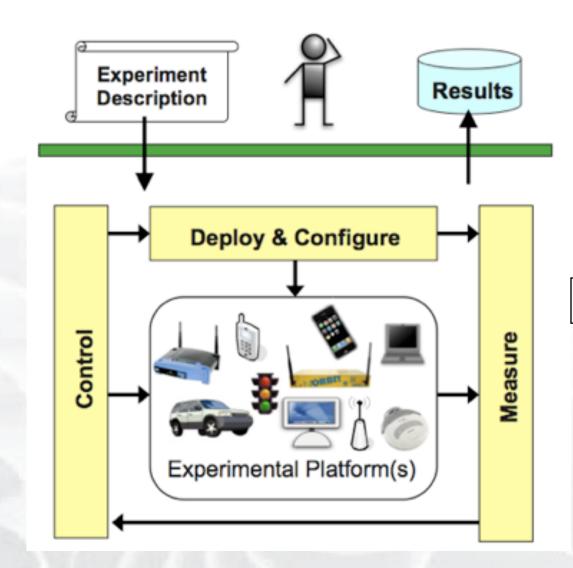
ProtoGENI Map Client showing resources available through the ProtoGENI clearinghouse



ProtoGENI Map Client showing a slice being created with resources from three aggregates

Kentucky Instrumentation Tool

Raven: Distributed System Provisioning and Management


Experimenter PC GENI Sliver Experiment Package 1 Tempestd Package 2 Poll for Updates Raven Tool Owl Viewer Trust Monitor Status Transfer Tempest Sign Upload Sync w/ Repo http, ftp, coblitz, Determine Groups bittorrent, coral Determine Actions iftd Execute Owld Stork Run Status Scripts Dependency Analysis Packages Generate Results Trust Verification Metadata Report to Database Install Packages Owl Database

The Raven suite of tools provide software package management and monitoring for large, long-running experiments

Repository

ORBIT Management Framework (OMF): Experiment Deployment, Control, Mgmt

Two OMF suite of tools support experiment deployment, control and measurement.

GENI Experimenter Tools

Resource	Description	Avail?	Works with
OMNI	Resource acquisition	Υ	PlanetLab, ProtoGENI, OpenFlow, myPLC
sfi	Resource acquisition	Υ	PlanetLab, MyPLC
ProtoGENI Tools	Enhanced resource orchestration & topology tools	Υ	ProtoGENI
ORCA	Resource acquisition	BE	DiCloud, ViSE, DOME, Kansei.
Seattle GENI Tools	Allows Seattle GENI to integrate with ProtoGENI systems	Υ	Seattle GENI
GUSH	Experiment control and management	Υ	PlanetLab, MyPLC, ProtoGENI
Raven	Distributed system provisioning & management tools	Υ	PlanetLab
NOX	Customizable switch controller	Y	OpenFlow capable Ethernet switches
Expedient	GUI for provisioning OpenFlow & myPLC	BE	Some OpenFlow campuses, some myPLC
LAMP	perfSONAR instrumentation that runs within an experiment	Υ	ProtoGENI
OMF/OML	Measurement tools & experiment control framework	Y	ORBIT, WiMax
Instrumentation Tools	Host and network measurement and monitoring	Υ	Univ. Kentucky ProtoGENI cluster
On-Time Measurement	Orchestration & provisioning of active measurements within an experiment	BE	ProtoGENI

Outline

- Introduction
- Resources
 - Compute & Programmable Systems

GEC10: March 15, 2011

- Wireless
- Networks
- Tools
- Getting access
- Wrap-up

Getting Access

- In general, any researcher can gain access to any GENI resource
- Access control typically requires first getting an account where you provide some information about you and your plans then acquiring resources where you ask for what you want
 - Access control mechanisms vary, but are consolidating
 - Details at http://groups.geni.net/geni/wiki/ExperimenterPortal

Let us help: email help@geni.net

Outline

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Looking ahead...

GENI Racks

- Notionally: rack of ~40 computers & programmable switch, connected to a GENI backbone
- Next 2-3 years: 20-40 racks in campuses, industrial research labs, topologically significant locations

GENI Racks

Real users

- Notionally: Enable campus networks to allow students, faculty, & staff to directly join (opt-in) in GENI experiments
- Next 2-3 years: OpenFlow and WiMax deployments on 10-20 campuses enable direct-to-end-system experiments

GENI's vision: expand reach to 100-200 campuses

Helpful Links

- Resource listing:
 - http://groups.geni.net/geni/wiki/ExperimenterPortal
- Connectivity Guide:
 - http://groups.geni.net/geni/wiki/ConnectivityOverview
- Advice & assistance:
 - help@geni.net