

Survey of Available GENI Resources

Aaron Falk GENI Project Office Updated 17 March 2011

Outline

Introduction

- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Introduction

- GENI has a diverse, rapidly growing set of resources – mostly prototypes – available for experimenter use
 - Compute resources: VM, hosts, cloud
 - Network resources: programmable switches, routers, & wireless

A GENI 'slice' can interconnect any of them using a range of connectivity options

GENI is Young

- These are early days with limited or inconsistent...
 - Availability, Reach, Scope, Tool integration
 - Changing rapidly, expect improvements in coming weeks and months
- The GPO is committed to helping experimenters identify, acquire, & connect the resources they need
 - Email: help@geni.net to get started

In the Pipeline

- As GENI matures, we expect to enhance those capabilities of greatest use.
 - GENI Racks on dozens, then 100's of campuses
 - OpenFlow deployments on dozens, then 100's of campuses
 - Wireless networks, including WiMax
 - Programmable network devices throughout the network
 - Real users able to directly join (i.e., opt-in) experiments
 - Deep and ubiquitous instrumentation and measurement
- Standard APIs will permit common tools to help with resource discovery, orchestration, distributed debugging, and experiment management across a range of technologies

Experiment Planning

- When planning a GENI experiment, consider what kind of resources you need and how they should interconnect
 - Resources (e.g., computation, storage, programmable network devices) are provided by *GENI Aggregates*
- Connectivity between aggregates comes in roughly four flavors
 - L2: Layer 2 (Ethernet VLANs)
 - OF: GPO-engineered OpenFlow Network (traffic flowspec &/or programmable switch controller)
 - IP: GPO-engineered IP
 - Internet

Subject to availability, an experiment can include any resource in any location using any connectivity

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Compute Resources in GENI (highlights)

PlanetLab

- Global testbed of user-mode VMs on the Internet
- myPLC: local PlanetLabs often with 'interesting' connectivity options

ProtoGENI

- Emulab-based compute clusters
- Experimenters get choice of OS; root access; local topology control
- Rapidly evolving tools for WAN topology control

GENI-enabled Compute Nodes: PlanetLab & MyPLC

Aggregate	Count	Location	Avail?	Connectivity		ivity	
				Internet	IP	L2	OF
PlanetLab	1000+ nodes at 500+ sites	Global	Y	Y			
MyPLC at BBN	3	Cambridge, MA	Y	Y	Y	Y	Y
MyPLC at Washington	2	Seattle, WA	BE	Y	Y	Y	Y
MyPLC at Stanford	3	Palo Alto, CA	BE	Y	Y	Y	Y
MyPLC at Georgia Tech	2	Atlanta, GA	BE	Y	Y	Y	Y
MyPLC at Clemson	2	Clemson, SC	BE	Y	Y	Y	Y
MyPLC at Indiana Univ.	?	Indianapolis, IN	BE	Y	Y	Y	Y
MyPLC at Wisconsin	2	Madison, WI	BE	Y	Y	Y	Y
MyPLC at Kansas State	6	Manhattan, KS	BE	Y	S	S	S

GENI-enabled Compute Nodes: ProtoGENI

Aggregate	Count	Location	Avail?	? Connectivity		ctivity	
				Internet	IP	L2	OF
ProtoGENI cluster: Utah	~600	Salt Lake City, UT	Y	Y	Y	Y	
ProtoGENI cluster: Internet2 backbone	18	LA, Kansas City, Houston, DC, Atlanta	Y	Y	Y	Y	
Wide Area ProtoGENI nodes	10	Clemson, Georgia Tech, Stanford, Rutgers	BE	Y	Y	Y	Y
ProtoGENI cluster: BBN	11	Cambridge, MA	Y	Y	Y	Y	Y
ProtoGENI cluster: UMass- Lowell	8	Lowell, MA	BE	Y	Y	Y	Y
ProtoGENI cluster: Kentucky	26	Lexington, KY	Y	Y	Y	Y	
ProtoGENI cluster: FIU	3	Miami, FL	BE	Y	Y	Y	
ProtoGENI cluster: LONI	2	Baton Rouge, LA	BE	Y	Y	Y	
ProtoGENI cluster: Wisc	38	Madison, WI	BE	Y			

Other GENI-enabled Programmable Systems

Aggrogato	Count	Location	Avail2	C 0	nnocti	vitv	
Ayyreyale	Count		Availt	0	mecu	vity	
				Internet	IP	L2	OF
Seattle GENI P2P hosting platform on home/office computers	4000+ installs	U of Washington and volunteer participants	Y	Y			
Supercharged PlanetLab Platform High-speed programmable router	5 nodes	St. Louis, Salt Lake City, Kansas City, DC, Atlanta	Y	Y	Y		
Programmable Edge Node Virtual router	1 node	U of Massachusetts, Lowell	Y	Y	Y	Y	Y
GENI Cloud / Transcloud Distributed Eucalyptus cluster	100 cpus	HP, UCSD, Kaiserslautern, Northwestern	Y	Y	Y	S	
DETER Compute cluster for security research	200 nodes	Los Angeles, CA	BP	Y			
BGP Multiplexer Buffered interface to global routing	4	Wisconsin, GaTech, Princeton, and Clemson	BE	Y			
Data Intensive Cloud Amazon EC2, S3, EBS Services	variable	Via UMass Amherst	BP	Y			

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

- Commercial IEEE 802.16e WiMAX base station with virtualization & open, programmable interfaces
- Deployed on campuses (4 up now, 4 in deployment)
- Works with commercial clients & handsets
- Good resource for mobility & vehicular experiments

GENI-enabled Wireless Systems (WiMax & others)

Aggregate	Count	Location	Avail? Connectiv		ivity		
				Inter- net	IP	L2	OF
Rutgers WiMax Network	1 base station	New Brunswick, NJ	BP	Y			
BBN WiMax	1 base station	Cambridge, MA	BP	Y	S	S	S
NYU Poly WiMax	1 base station	Brooklyn, NY	S	Y			
UCLA WiMax	1 base station	Los Angeles, CA	S	Y			
ORBIT Large 802.11 Testbed w/ rich tools	400 nodes	New Brunswick, NJ	Y	Y	Y	Y	Y
Kansei Sensor Testbed	96 nodes	Columbus, OH	Y	Y			
CMU Wireless Channel Emulator FPGA-based, Real-time	11 nodes	Pittsburgh, PA	Y	Y			
ViSE Steerable weather radar	3 nodes	Amherst, MA	Y	Y	Y	Y	
DOME VMs on networked city buses	35 nodes	Amherst, MA	Y	Y			

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

OpenFlow Campus: Stanford GENI Network

- OpenFlow production traffic now
- OpenFlow 1.0 ref implementation now
- Early integration with campus trials HP, NEC, Toroki, Quanta, and OpenWRT switches
- OF sw devel/sActiveport

of the Future

Nick McKeown, PI

u Falukai

GENI-enabled Networks

Many systems mentioned elsewhere also include network resources

Aggregate	Location	Avail?	Connectivity			
			Internet	IP	L2	OF
Internet2 Backbone	LA, Houston, Atlanta, DC, New York	Y	Y	Y	Y	Y
National Lambda Rail Backbone	Seattle, Sunnyvale, Denver, Chicago, Atlanta		Y	Y	Y	Y
Regional Networks	E.g., CENIC, SOX, NOX, BEN, LONI	Y	Y	Y	Y	S
GpENI	Various locations in KS, MO, Europe	Y	Y		S	S
ProtoGENI Internet2 network	LA, Kansas City, Houston, DC, Atlanta	Y	Y	Y	Y	
BBN OpenFlow	Cambridge, MA	Y	Y	Y	Y	Y
Stanford Campus OpenFlow	Palo Alto, CA	Y	Y	Y	Y	Y
U Washington OpenFlow	Seattle, WA		Y	Y	Y	Y
U. Wisconsin OpenFlow	Madison, WI		Y	Y	Y	Y
Indiana OpenFlow	Indianapolis, IN (2 campuses)	Y	Y	Y	Y	Y
Rutgers OpenFlow	New Brunswick, NJ	Y	Y		Y	Y
Clemson Campus OpenFlow	Clemson, SC	Y	Y	Y	Y	Y
Georgia Tech OpenFlow	Atlanta, GA	Y	Y	Y	Y	Y

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Gush: Experiment Control Tool

ProtoGENI Map Client

Raven: Distributed System Provisioning and Management

Sponsored by the National Science Foundation

GENI Experimenter Tools

Resource	Description	Avail?	Works with
OMNI	Resource acquisition	Y	PlanetLab, ProtoGENI, OpenFlow, myPLC
sfi	Resource acquisition	Y	PlanetLab, MyPLC
ProtoGENI Tools	Enhanced resource orchestration & topology tools	Y	ProtoGENI
ORCA	Resource acquisition	BE	DiCloud, ViSE, DOME, Kansei.
Seattle GENI Tools	Allows Seattle GENI to integrate with ProtoGENI systems	Y	Seattle GENI
GUSH	Experiment control and management	Y	PlanetLab, MyPLC, ProtoGENI
Raven	Distributed system provisioning & management tools	Y	PlanetLab
NOX	Customizable switch controller	Y	OpenFlow capable Ethernet switches
Expedient	GUI for provisioning OpenFlow & myPLC	BE	Some OpenFlow campuses, some myPLC
LAMP	perfSONAR instrumentation that runs within an experiment	Y	ProtoGENI
OMF/OML	Measurement tools & experiment control framework	Y	ORBIT, WiMax
Instrumentation Tools	Host and network measurement and monitoring	Y	Univ. Kentucky ProtoGENI cluster
On-Time Measurement	Orchestration & provisioning of active measurements within an experiment	Y	ProtoGENI, PlanetLab, CRON, INSTOOLS, and Gush

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Getting Access

- In general, any researcher can gain access to any GENI resource
- Access control typically requires first getting an account where you provide some information about you and your plans then acquiring resources where you ask for what you want
 - Access control mechanisms vary, but are consolidating
 - Details at http://groups.geni.net/geni/wiki/ExperimenterPortal

Let us help: email help@geni.net

- Introduction
- Resources
 - Compute & Programmable Systems
 - Wireless
 - Networks
 - Tools
- Getting access
- Wrap-up

Looking ahead...

• GENI Racks

- Notionally: rack of ~40 computers & programmable switch, connected to a GENI backbone
- Next 2-3 years: 20-40 racks in campuses, industrial research labs, topologically significant locations

GENI Racks

Real users

- Notionally: Enable campus networks to allow students , faculty, & staff to directly join (opt-in) in GENI experiments
- Next 2-3 years: OpenFlow and WiMax deployments on 10-20 campuses enable direct-to-end-system experiments

GENI's vision: expand reach to 100-200 campuses

Sponsored by the National Science Foundation

Helpful Links

- Resource listing:
 - http://groups.geni.net/geni/wiki/ExperimenterPortal
- Connectivity Guide:
 - http://groups.geni.net/geni/wiki/ConnectivityOverview
- Advice & assistance:
 - help@geni.net