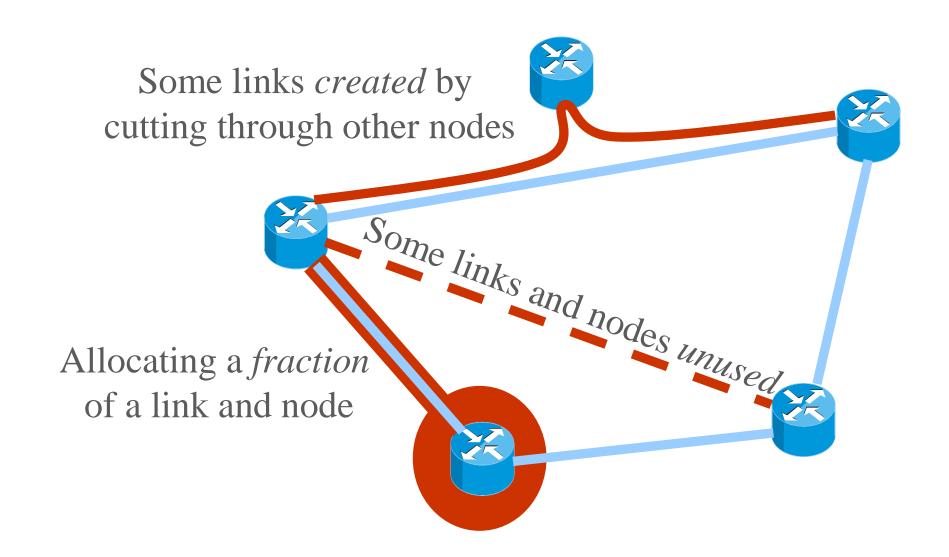
GENI Backbone: Design Overview

GENI Backbone Working Group

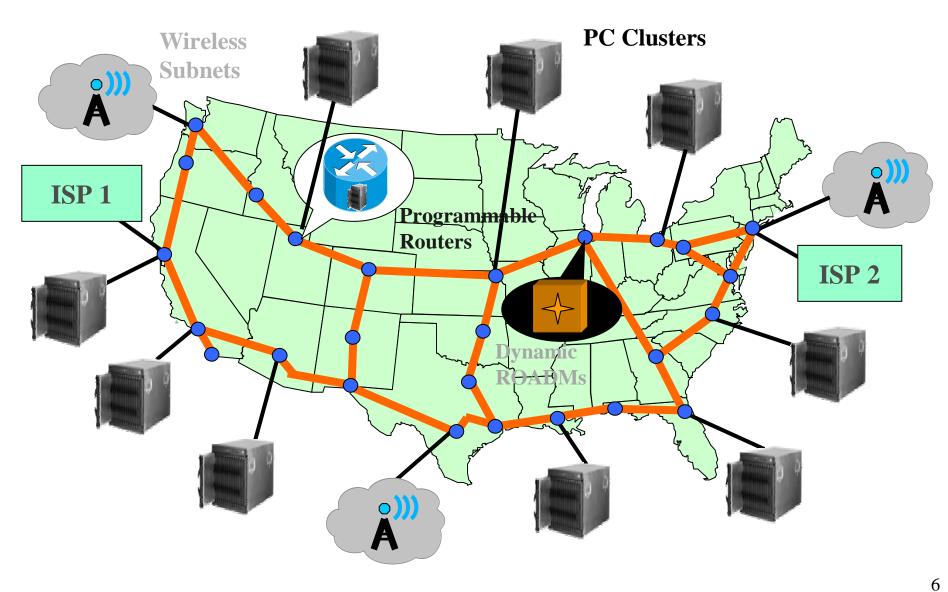
Dan Blumenthal, Dean Casey, Patrick Crowley, Farnam Jahanian, T.V. Lakshman, Bryan Lyles, Nick McKeown, Sampath Rangarajan, Jennifer Rexford, Jon Turner, and Hui Zhang

Outline

- Backbone requirements
 - Principles
 - Experimenter's view
- Phased deployment
 - General-purpose processors to NPs and FPGAs
 - Conventional optics to programmable components
- Software modules
 - Component managers, libraries, etc.
- Example experiments
 - End-system multicast, routing control platform, valiant load balancing, and flow switching
- Recent issues discussed in the backbone group


GENI Backbone Requirements

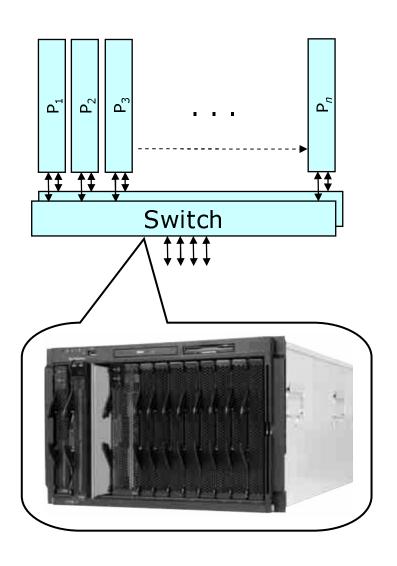
- Programmability
 - Flexible routing, forwarding, addressing, circuit set-up, ...
- Isolation
 - Dedicated bandwidth, circuits, CPU, memory, disk
- Realism
 - User traffic, upstream connections, propagation delays, equipment failure modes
- Control
 - Inject failures, create circuits, exchange routing messages
- Performance
 - High-speed packet forwarding and low delays
- Security
 - Preventing attacks on the Internet, and on GENI itself


A Researcher's View of GENI Backbone

- Virtual network topology
 - Nodes and links in a particular topology
 - Resources and capabilities per node/link
 - Embedded in the GENI backbone
- Virtual router and virtual switch
 - Abstraction of a router and switch per node
 - To evaluate new architectures (routing, switching, addressing, framing, grooming, layering, ...)
- GENI backbone capabilities evolve over time
 - To realize abstraction at finer detail
 - To scale to large # of experiments

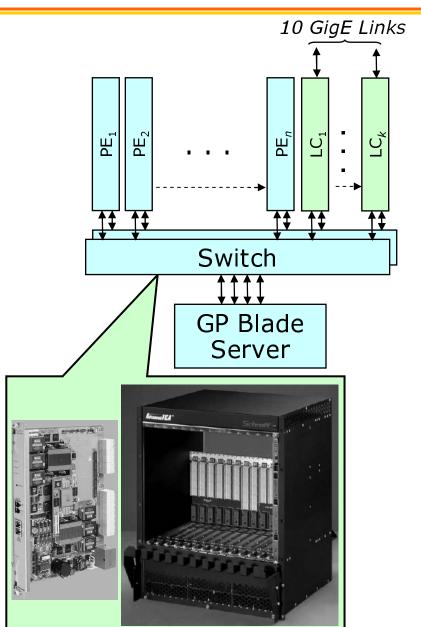
Creating a Virtual Topology

GENI Backbone

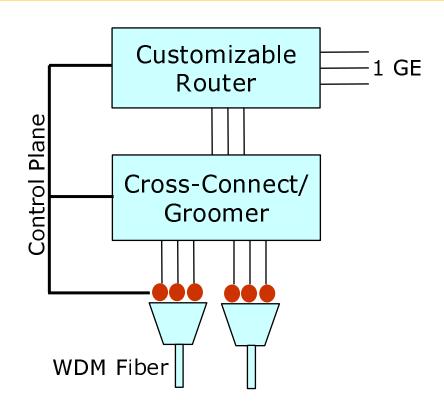


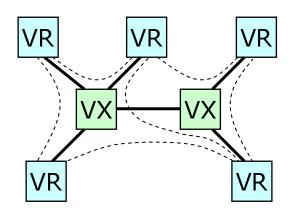
GENI Backbone: Phased Deployment

- Phase 0: general purpose processors
 - General purpose processors connected to switch
 - Virtualization platform for multiple virtual routers
- Phase 1: ATCA-based programmable router
 - Network processors and FPGAs, and line cards
 - Faster packet processing and line-card cut through
- Phase 2: reconfigurable optics
 - Cross-connect and off-the-shelf framer/groomer
 - True circuits and bypass of programmable router
- Phase 3: programmable optics
 - Dynamic optical switch with programmable framer
 - Experimental flexibility for framing, grooming, set-up, ...

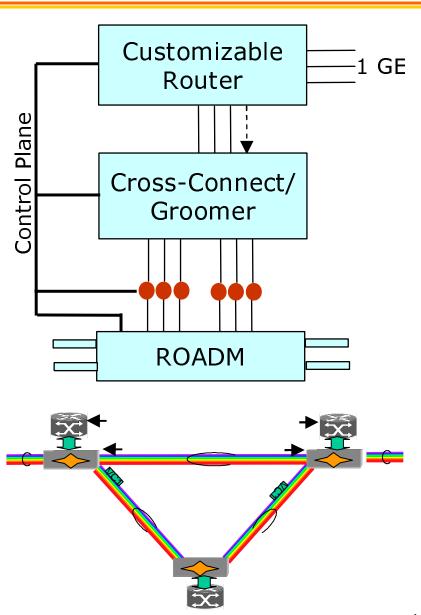

Phase 0: General Purpose Processors

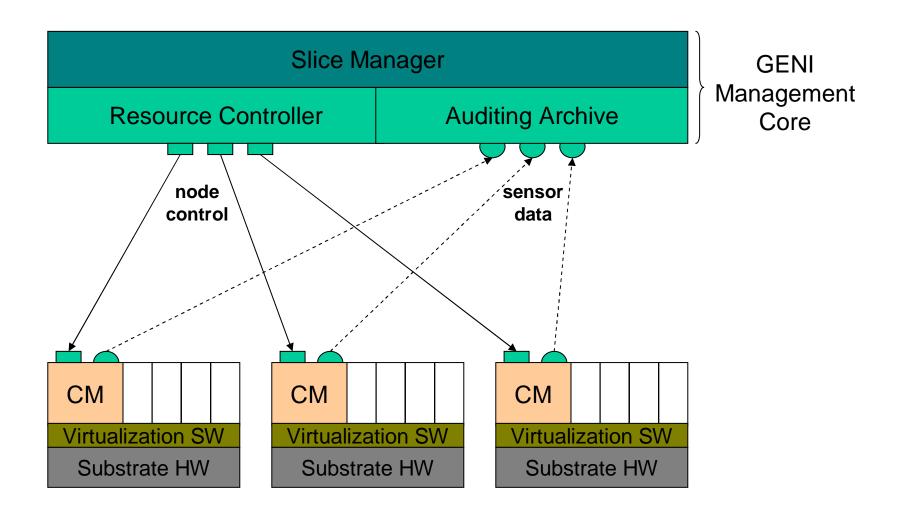
- Node with collection of assignable resources
- Embed virtual routers
 - A virtual machine
 - An entire machine
 - Multiple machines
- Initial VINI deployment
 - In NLR and Abilene
- Ultimately not scalable
 - All packets go through the CPU
 - Slow software packet processing


Phase 1: High-Performance Components


- ATCA chassis and blades
- Network Processor (NP) and FPGA blades
 - Offload packet handling
 - Control plane on GPs
- Line-card cut-through
 - For a slice not running at this site
 - Packets go from LC to LC

Phase 2: Reconfigurable Optics


- Circuits between backbone routers
 - Cut-through traffic completely bypasses programmable router
- Conventional framing
 - E.g., SONET
- GENI controls circuit set-up and teardown
 - As part of creating and deleting a slice
 - Limited flexibility

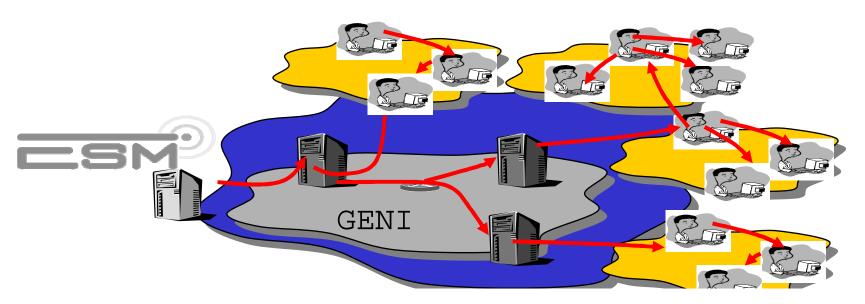


Phase 3: Programmable Optics

- Dynamic optical switch
 - Programmable groomer and framer
 - Reconfigurable add/drop multiplexers
- Experimental flexibility
 - Maleable bandwidth
 - Arbitrary framing implemented on FPGAs
 - Dynamic set-up and teardown of circuits

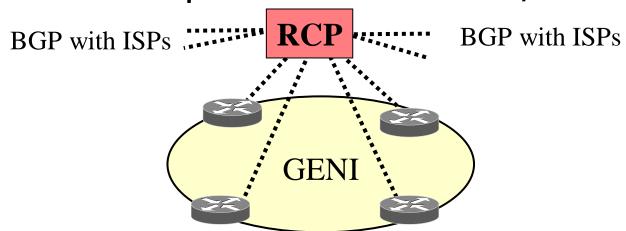
Software: GENI Management Core

GENI Backbone Software


- Component manager and virtualization layer
 - Abstraction of virtual router and virtual switch
 - Setting the scheduling parameters
- Multiplexers for resources hard to share
 - BGP sessions with the outside world
 - Interface to element-management systems
- Exchanging traffic with the outside world
 - Routing and forwarding software
 - VPN servers and NATs at Internet boundary
- Libraries to support experimentation
 - APIs for access to NP-based packet forwarding
 - Specifying, controlling, and measuring experiments
 - Auditing and accounting to detect misbehavior

Feasibility

- Industrial trends and standards
 - Advanced Telecom Computing Architecture (ATCA)
 - Network processors and FPGAs
 - SONET cross connects and ROADMs
- Open-source networking software
 - Routing protocols, packet forwarding, network address translation, diverting traffic to an overlay
- Existing infrastructure
 - PlanetLab nodes, software, and experiences
 - National Lambda Rail and Abilene backbones
 - Ongoing work on VINI and programmable router


Example Experiments: End-System Multicast

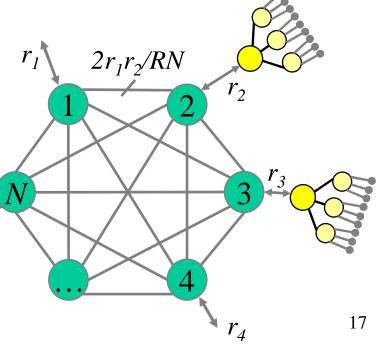
- End-System Multicast
 - On-demand, live streaming of audio/video to many clients
 - Intermediate nodes forming a multicast tree
- Ways GENI could support ESM research
 - Communication with Internet clients and servers
 - Backbone nodes participating in the multicast tree
 - New network architectures running under ESM
 - Native multicast support and QoS guarantees for live service
 - Burst transfer, push, and network-storage for on-demand service

Example Experiments: Routing Control Platform

- Routing Control Platform (RCP)
 - Refactoring of control and management planes
 - Computes forwarding tables in separate servers
- Ways GENI can support RCP research
 - Providing direct control over the data plane
 - BGP sessions with the commercial Internet
 - Controlled experiments with node/link failures

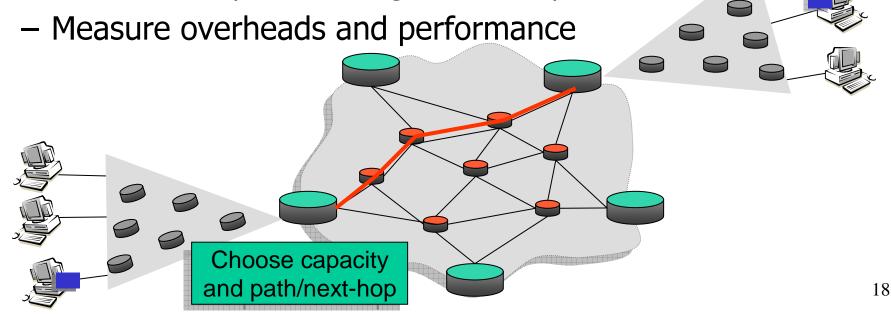
Example Experiments: Valiant Load Balancing

- Valiant Load Balancing
 - Fully mesh of circuits between routers
 - Direct traffic through intermediate node
- Ways GENI can support VLB


Virtual circuits with dedicated bandwidth

 r_N

Experimentation with routing


 Measurement of effects of higher delay vs. higher throughput on users

Explore impact on buffer sizing in routers

Example Experiments: TCP Switching

- TCP switching
 - TCP SYN packet triggers circuit set-up
 - Effective traffic management and quality of services
- Ways GENI can support TCP flow switching
 - Programmable routers act as edge routers
 - Trigger circuit set-up and tear-down
 - Buffer data packets during circuit set-up

Recent Issues Discussed in Backbone Group

- GENI topology design with 20-30 sites
 - Bounded delay, close to physical distance
 - Path diversity needed by many experiments
 - Matching fiber paths and interconnection points
 - Minimizing the backhaul cost of tail circuits
- Edge functionality
 - Need for packet scheduling at multiplexing points
 - To provide strong isolation between slices
 - Creation of use cases with the wireless group
 - E.g., CBR circuit between two access points

Recent Issues Discussed in Backbone Group

- Common software across working groups
 - Software for the general-purpose CPUs
 - Choice of operating system (e.g., Linux, real-time)
 - Virtualization layer for slivers and virtual interfaces
 - Scheduling/shaping for access to CPU, link, ...
- Packet headers
 - Media header: per-hop header to traverse link
 - Sliver/v-interface headers: to de/mux to the slice
 - Experiment header: local to the experiment
 - Some headers may be combined on any given hop, and header formats may differ per hop

Recent Issues Discussed in Backbone Group

- Signaling vs. configuration to create slice
 - Need for packet de/multiplexing at each hop
 - Some sort of "label swapping" based on sliver
 - Set up these tables by top-down configuration?
 - Or, use some sort of signaling protocol?
 - Challenges of signaling a graph, rather than path
- Circuit abstraction at the edge?
 - Should edge sites be able to set-up circuits?
 - Or, can circuits only start at the backbone node?
 - Many experiments want a backbone cut-through?
 - Campuses increasingly have optical capabilities

Existing GENI Design Documents

- GDD-06-09
 - "A Proposed Architecture for the GENI Backbone Platform"
- GDD-06-25
 - "Backbone Software Architecture"
- GDD-06-26
 - "GENI Backbone Network Node Architecture: Requirements and Architecture"
- GDD-06-27
 - "GENI Topology Design"
- GDD-06-31
 - "In VINI Veritas: Realistic and Controlled Network Experimentation"

Planned GENI Design Documents

- Split software into several documents
 - Hardware-specific software for programmable router
 - Component manager and component aggregate
 - Run-time software for experiments
- Backbone facility design
 - Evolve "GENI Topology Design" into a more detailed set of requirements for the facility
 - Include requirements for tail circuits and how the optics connects to the underlying fiber plant

Conclusions

- Supporting experiments across the layers
 - VPN-like support for edge experiments
 - New control plane with packet forwarding offload
 - New addressing and forwarding schemes
 - Dynamic control of the optical components
- Balancing risk and flexibility
 - Phased deployment
 - Standards (e.g., ATCA, SONET)
 - Open-source software
 - Ongoing work on VINI and programmable router