
Using Attribute Based Access
Control (ABAC)

Ted Faber, Alefiya Hussain, John Wroclawski,
Mike Ryan, Ken Klingenstein,
Stephen Schwab, Jay Jacobs

22 July 2010

House Rules

• Topic: the ABAC Trust Mgt System
– Attribute Based Trust Management System
– Origin: Sparta (NAI at the time)
– A Concrete Realization a General ABAC

• Workshop/Tutorial Format
– Questions and interruptions welcome

• A Three-Hour Tour

Outline

• Authorization Problems & ABAC Features
• Using ABAC

– Principals & Credentials
– Policies

• Examples of ABAC in Use
• The ABAC Library and Example Code

– Basic functionality
– Multiple Bindings

• Future Developments

Authorization

• Basic Question: “Can Principal Perform
Action?”

Actions

OK

Facts

Rules

Decision

Principal

Identity

• Decision Quality
– Make Right Decisions
– Set Correct Policy
– Audit Operation

• Scaling
– More Users &

Providers

Problems With Quality

Actions

OK

Rules

Decision

• Rules Often Part Of
Application
– Difficult To Understand

• “Who can come in here?”

– Difficult To Debug
• “How did they get in here?”

• Boolean Decisions
– Difficult To Audit

• “Why did you let them in?”

ABAC and Quality
• Standardize Logic For Authorization
• Make Rules Explicit
• Include Reasoning in Decisions

OK

a.
b.
c.

No

OK

OK

No

OK

ABAC

New Players: Auditors

• Policy Auditors
– Use Explicit Rules To Check Policy

• Forensic Auditors
– Use Explicit Reasoning To Confirm Decisions
– Track Unexpected Authorization Decisions

• Goals:
– Better Designed Policies
– Better System Monitoring

Changes Auditing From Screen
Scraping To Reasoning

Problems at Scale

a.
b.
c.

a.
b.
c.

a.
b.
c.

• Many incompatible authorization systems
must work together

Scale: The Principal's View

• More providers/facilities means more
– Formats For Facts
– Ways of Proving Identity

Facts

a.
b.
c.

Identities

Scale: Facility View

• More Principals means
– Providers: More Facts/Rules To Understand
– Admins: More Time Administering Local

Info/Facts

Actions

Rules

Facts

ABAC and Scaling

• Powerful Delegation
– Decentralizes Control of Facts
– Localizes Decisions

• New Principals
– Certifiers Act As Fact Distributors

Delegation Rules

• Principals Delegate Power To Attest Facts
• Delegation Can Cross Administrative Lines
• Delegations Visible As Rules

Facts

ABAC

Facts

BBN Local
FactsUSC Local

Facts

ISI Local
Facts

Enabling Certifiers

• Third parties that attest facts
– Example: AARP

Local
AARP

Actions

AARP
Resource?

Local Service
Delegated Rights

Facility Respects
Certifier Fact

OK

OK

Once A Certifier Becomes Known
Services Accept Credentials
Without Direct Agreement

ABAC Certifiers and Scale

• Certifiers Help Facilities
– Widely trusted facts to include in policy
– Reduce local credential management
– Anchors for federation

• Certifiers Help Principals
– A few facts can gain access to many facilities
– Simplify joining a coalition

Contrast With Others

• Primary Distinctions
– Richer Delegation Rules
– Explicit Reasoning

• Shibboleth
– Attests Facts About Users
– No Representation Of The Reasoning

• X.509 /SSL/PKI
– Hierarchical Trust
– Simple Identity & Fact Attestation
– Again, No Reasoning

Outline

• Authorization Problems & ABAC Features
• Using ABAC
• Examples of ABAC in Use
• The ABAC Library and Example Code
• Future Development

ABAC Model Outline

• Fundamental Objects
– Principals, Attributes, Credentials, and Proofs

• Negotiation
– Proving Access

• Interfacing to Applications
– New and Legacy Applications

• ABAC Logics
– RT0 and friends

ABAC Principals

• Principals Represent
– Requesters of Actions

• “Can this principal take this action?”

– Service Providers
– Certifiers
– Administrative Entities

ABAC Principals In The Wild

Slice
Authority

Service
RequestClient

ABAC Principals In The Wild

Slice
Authority

TIED
Administrator

GPO
Certifier

Service
RequestClient

Sets PolicyAttests fact

ABAC Principal Identity
Requirements

• A Principal Must Be Able To:
– Prove Its Identity To Another Entity
– Securely Attest Attributes About Principals

• A Principal's Identity Is Unique
– If 2 Entities Refer To Principal With an ID, They

Are Referring To The Same Principal
• (One Human or Process May Be Several Principals)

• These Are The Only Constraints

Minimal Principals

• Bootstrap Identity From Many Services
• Applications Provide Semantics

– Personal Information
– Readable Names

• ABAC Only Knows What It Defines
(Attributes)
– No Implicit Information In Principal ID
– Everything Available For Analysis

Attested Attributes

• Role (a string) Is Attested By Principal
• Each Principal Defines An Attribute Space

– P.admin differs from Q.admin
– Roles Are Often Related By Convention

• Without A Rule, This Is Immaterial

• Each Principal Controls Its Attribute Space

Principal.Role

Attributes and Actions

• Attributes Bound To Actions By Apps
– “Can this principal take this action” →

“Does this principal have this attribute”

• Policy Set In Terms Of Attributes
– Attributes Attached To Principals
– Some Control of Attributes Delegated

• Service Provider Checks Attributes
– Binding (Attribute to Action) in configuration

Attaching Attributes

• Principal Directly Attaches
– Q says “P has Q.attr”

• Controlling Principal (Q) Assigns Its Attribute Space

• Principal Defines A Rule That Attaches
– Q says “all principals with P.a1 have Q.a2”

• Controlling Principal (Q) Delegates Some Of Its Space

• Rules Defined By ABAC Logics
– RT0: Simple Attributes
– RT1: Parameterized Attributes
– …

– RT
n
 is a subset of RT

n+1

Credentials

• Credential Manifests Assignment Or Rule

• Attested by Principal
– Only Valid When Attested By Attribute Owner

• Independently Verifiable

P has Q.attr Q

R.a1 has Q.a2 Q

P.a1 has Z.a2 Q

Credential Uses

• Policies: Attribute Inference Rules

• Reasoning: Proof A Principal Has Attribute

OK

R.a1 has Q.a2 Q

X.r3 has R.a1 R

R.a1 has Q.a2 Q

X.r3 has R.a1 R

P has R.a1 R

Proofs

• Evidence That A Principal Has An Attribute
• Consists of Principal, Attribute, Credentials

P, Q.attr

P has Q.attr Q

P, Q.a2

R.a1 has Q.a2 Q

P has R.a1 R

Proof Properties

• Independently Verifiable
– Any Observer Believes The Proof

• Auditors
• Forensics

• Encode reasoning
– Credentials Encode Justifications

• Policy Checking
• Debugging

Proving

• Parties Agree On Principal And Attribute
• Exchange Credentials Until:

– Agree On A Proof
• Both Sides Have The Proof

– Cannot Make Progress

Proving

Actions

Principal (P)

I'm P and I want to do

Prove P has Q.a2 R.a1 has Q.a2 Q

P has R.a1 R

R.a1 has Q.a2 Q

OK P has R.a1 R

R.a1 has Q.a2 Q

P, Q.a2

P, Q.a2

P, Q.a2

R.a1 has Q.a2 Q

Using Public Credentials

Actions

Certifier Certifier

• Both Sides Can Gather Public Credentials
– Credentials stand alone

Sensitive Data

• ABAC Model Supports Control Of:
– Private Credentials
– Sensitive Credentials

• Some Credentials Are Access Controlled
– Show Clearance Only To Gov't Agent

• Partner Must Prove Attribute To See
Credential

• Paranoia:
– Can Ask For Proof of Attribute To Hide Missing

Credential(!)

Integrating With An
Application

• ABAC Is Part Of Applications
• An Application:

– Binds Request to Principal
• Challenge/Response
• Signed Request

– Binds Service to Attribute
• Configuration

• Carries Out An ABAC Negotiation
– New Applications Include This Explicitly

Adding ABAC To
Applications

• Existing Application With Opaque
Authorization Data Fields
– Put ABAC Credentials into Opaque Fields
– Use Error Codes To Indicate More Info Needed

• Existing Application
– Add Separate Pre-prover

• Sample Code In The Library

– Application Takes ABAC creds from Pre-prover

Pre-Approval

Pre-
Approve

Pre-
Approve

Prove Access
Attribute

Transfer Proof
To Application

IdentityOK
Original
ID-Based
Exchange

ABAC Logic: RT0

• Assignment And Delegation
– Seen These Already:

– Written as:
• Q.attr P←
• Q.a2 R.a1←

P has Q.attr Q R.a1 has Q.a2 Q

Intersections

• Intersection (Conjunction)

– A Principal With R.a1 and S.a1 Also Has Q.a2
– Not A Shorthand For 2 Credentials
– Written:

• Q.a2 R.a1 and S.a1←

(R.a1 and S.a1) has Q.a2 Q

RT0: Linking Credentials

• Linking Credential
– Delegates To A Set Of Prinicpals

– {R.a1} Is The Set Of Principals With R.a1
• Any Member of the Set Can Now (Indirectly) Assign Q.a2
• Principal R Controls The Membership of {R.a1}
• R.a1 is the Linking Role

– Written
• Q.a2 R.a1.a2 ←
• I Prefer: Q.a2 (R.a1).a2←

{R.a1}.a2 has Q.a2 Q

Linking Role Example

GPO

{GPO.PI}.user
has GPO.user GPO

Ted

Ted has GPO.PI GPO

Bob

Lou

Alice

Alice has Ted.user Ted

Bob has Ted.user Ted

Lou has Ted.user Ted

All The Students Have GPO.user

Students

Linking Credentials &
Principal Classes

• Principal Classes
– Useful
– Collaboratively Defined

• (Some Shared Semantics Required)

• Example:
– GPO: “All Graduate Students of GENI PIs are

Blue”
– GPO.Blue GPO.PI.grad_student←

GPO.PI Ted, GPO.PI Steve, …← ←

Outline

• Authorization Problems & ABAC Features
• Using ABAC
• Examples of ABAC in Use
• The ABAC Library and Example Code
• Future Development

Outline

• Authorization Problems & ABAC Features
• Using ABAC
• Examples of ABAC in Use
• The ABAC Library and Example Code
• Future Development

Library Architecture

Application

Credential
Access
Control

Prover
Asynchronous

Info
Discovery

Credential
Discovery
Daemon

ABAC Library

The Library

• Beta Release
– Basic Functionality Today

• Subsume simple ID authorization

– Base For Expansion

• Current Features:
– X.509-based Credential Management
– RT0 Proofs

• Future Features
– More Authentication Support
– Asynchronous Credential Discovery
– Information Protection

Library Today

Application

Credential
Access
Control

Prover
Asynchronous

Info
Discovery

Credential
Discovery
Daemon

ABAC Library

Principal Implementation

• Principal ID: Public Key Fingerprint
– RFC 3280 fingerprint

• Currently
– Self-signed X.509 Certificates
– Existing SSL Libraries

• Binds principals to requests
• Well Tested Crypto And Challenge Base

• Future
– Other Key-Based Authentication Is Direct
– Non-Key-Based Requires More Infrastructure

Credential Implementation

• ABAC Cannot Reformat Credentials
– Credential Is Signed By Prinicpal
– Reformatting Is Forging

• Goal: Small Set Of Credential Formats
– X.509 Attribute Certificates (RFC 3281)
– SAML Attribute Assertions

• Today: X.509 Attribute Certificates

Programming Model:
Contexts

Proof
Context

Credentials
Used For

Proof

Clone
Proof

Context

Proof
Context

P has R.a1 R

OK
Reject

Proof
Context

Programming Model:
Proving

Prover

Proof
Context

Targets: Attr,
Principal

P has R.a1 R

Q has R.a1 R

P has Z.a1 Z

Error Code

Success: Credentials Are Proof
Failure: Credentials Are Starting
 Point For Next Round

Programming Model:
Application Skeleton

Main
Proof

Context P has R.a1 R

P has R.a1 R
At Startup:
●Create Main Context
●Load With Policy

Request
Proof

Context Z.a has P.a2 P

Z has P.a1 P

Clone

On Request:
●Clone Context
●Add Request Credentials
●Bind Request To Principal & Attr.

Prover

Request
Proof

Context

Error Code

P has R.a1 R

Q has R.a1 R

P has Z.a1 Z

Process Request:
●Attempt to Prove Principal has Attr
●Return Proof or Partial
●Allow Action or Return Error
●(Release or Cache Context)

Getting The ABAC Library

• What You Get:
– Credential Generation Utilities
– RT0 Prover
– Example policies as credentials
– Sample Pre-Prover code
– Bindings for C, C++, Perl, Python
– Documentation

• What You Need
– LibStrongSwan and swig

• http://abac.deterlab.net

http://abac.deterlab.net/

Pre-Installing

• Install libstrongswan (4.4.0)
– X.509 Attribute Certificate Implementation
– Linux IPSec

• Only need the certificate libs, which are cross-platform

– download/make/configure cycle
• Just for libstrongswan

– Details at http://strongswan.org/

• Bindings
– Install swig 1.3
– Standard rpm or package
– Details at http://www.swig.org/

http://strongswan.org/
http://www.swig.org/

Installing

• Install libabac
– download/make/configure
– Details at http://abac.deterlab.net

http://abac.deterlab.net/

Data Structures

• Context
– Credential Validation and Proof Generation

• Credential
– Manipulation of ABAC Attributes

• Role
– Attribute Elements

Context: Input

• Credential Loading:
– load_id_file(), load_id_chunk()

• Add a principal public key

– load_attribute_file(), load_attribute_chunk()
• Add an attested attribute

– load_directory()
• Bulk load a directory of certificates

• Cloning
– Copy Constructor (Deep Copy)

Context: Output

• Query()
– Input: target prinicpal & attribute (strings)
– Output: status code, Credential list

• Credentials()
– The Contents of the Context as Credential List

Credentials & Roles

• Credential
– Head and Tail Roles
– attribute_cert() and id_cert() accessors

• These access the X.509 basis for the Credentials

• Role (object before or after a)←
– is_role(), is_linked(), is_principal()
– role_name(), linked_role(), principal()

Python Example
import sys

from ABAC import *

Make sure arguments are present

if len(sys.argv) < 2:

 print "Usage: prover.py <keystore>"

 exit(1)

keystore = sys.argv[1]

init library

libabac_init()

Create Context

ctx = Context()

Import Policies/Credentials

ctx.load_directory(keystore)

Ask for proof

(success, credentials) = ctx.query("3f1aca4c5911b345d81c5f1a77675dce13249d0c.fed_create",

"5839d714b16bbe108642c5eb586c2173420bed19",)

Print Credentials

for credential in credentials:

 print "credential %s <- %s" % (credential.head().string(), credential.tail().string())

libabac_deinit()

A walk through the Pre-
Prover

• Skeleton For Networked ABAC Negotiation
• XMLRPC/SSL version of Context::query()
• Code included in the libabac package

• (Also a perl ABAC example)

Server Operation

• Initialize Context
– Read policy from credentials

• Start XMLRPC Server
• On Request

– Get targets
• Principal from SSL connection
• Attribute Is Parameter

– Clone context
– Add new credentials
– Prove and return

The Server
#!/usr/bin/perl

Import libraries

use XMLRPC;

use ABAC;

use constant { PORT => 8000, };

#Start ABAC
ABAC::libabac_init;

Read Credentials into Base Context

my $keystore = shift || die "Usage: $0 <keystore>\n";

my $ctx = ABAC::Context->new;

$ctx->load_directory($keystore);

XMLRPC startup

my $server = XMLRPC->new();

$server->add_method({

 name => 'abac.query',

 code => \&abac_query,

 signature => ['struct struct'],

});

$server->run(8000);

Server Responder
sub abac_query {

 my ($server, $request) = @_;

 my $peer_cert = $server->{peer_cert};

 my $peer_id = ABAC::SSL_keyid($peer_cert);

 # clone the context so the state remains pure between requests

 my $local_ctx = ABAC::Context->new($ctx);

 foreach my $cred (@{$request->{credentials}}) {

 # Import request credentials into the clone

 my $ret = $local_ctx->load_id_chunk($cred->{issuer_cert});

 warn "Invalid issuer certificate" unless $ret == $ABAC::ABAC_CERT_SUCCESS;

 $ret = $local_ctx->load_attribute_chunk($cred->{attribute_cert});

 warn "Invalid attribute certificate" unless $ret == $ABAC::ABAC_CERT_SUCCESS;

 }

 my $role = $request->{role};

 # Do the proof and return the results

 my ($success, $credentials) = $local_ctx->query($role, $peer_id);

 return $success;

}

Credential Manipulation

• Creddy is Credential Manipulation Tool
• Functions:

– Create – make a new identity
– Attribute – make a new credential
– Verify – confirm validity of credential
– Keyid – get the fingerprint/ID
– Roles – list the roles in an attribute credential

Creddy: Create

• Making A New ID
$ creddy --generate --cn=name

• Results
– New X.509 cert in name_ID.pem

• Self-signed

– New private key in name_private.pem

• Congratulations: You're A Principal

$./creddy/creddy --generate --cn=test
Generating key, this will take a while. Create entropy!
 - move the mouse
 - generate disk activity (run find)
$ ls test*
test_ID.pem test_private.pem

Creddy: Verify

• Access to same validation as Context
• Example:

$ creddy/creddy --verify --cert=test_ID.pem

signature good, certificates valid

• With a bad certificate:
$ creddy/creddy --verify --cert=test2_ID.pem

signature invalid

Creddy: Get Principal ID

• Principal IDs used in credentials
• Running the command:

$ creddy --keyid --cert=test_ID.pem

c4c1a11fc17e10efb5951866cd073052fde3a764

Creddy: Assign an Attribute

$ creddy --keyid --cert=test_ID.pem

c4c1a11fc17e10efb5951866cd073052fde3a764

$ creddy --keyid --cert=subject_ID.pem

Bcecc370fa6b01cdca4a8876bd3ca93d494b9877

$ creddy --attribute --issuer=test_ID.pem --key=test_private.pem
--subject=subject_ID.pem --role=create --out=assign.der

$ creddy --roles --cert=assign.der

c4c1a11fc17e10efb5951866cd073052fde3a764.create <-
bcecc370fa6b01cdca4a8876bd3ca93d494b9877

Assign create to another
principal from our new principal's

attribute space

Creddy: Delegate an
Attribute

$ creddy --attribute --issuer=test_ID.pem --key=test_private.pem
--subject=subject_ID.pem --subject-role=researcher --role=create
--out=delegate.der

$ creddy --roles --cert=delegate.der

c4c1a11fc17e10efb5951866cd073052fde3a764.create <-
bcecc370fa6b01cdca4a8876bd3ca93d494b9877.researcher

Delegate create to another
principal's researcher attribute from our

new principal's attribute space

Creddy: Delegate to a
Linking Role

$ creddy --attribute --issuer=test_ID.pem --key=test_private.pem
--subject=subject_ID.pem --subject-role=funder.researcher --role=create
--out=linked.der

$ creddy --roles --cert=linked.der

c4c1a11fc17e10efb5951866cd073052fde3a764.create <-
bcecc370fa6b01cdca4a8876bd3ca93d494b9877.funder.researcher

Delegate create to a set of principals
assigned the researcher role from a

principal with another principal's
funder role from our new principal's

attribute space

Outline

• Authorization Problems & ABAC Features
• Using ABAC
• Examples of ABAC in Use
• The ABAC Library and Example Code
• Future Development

The Future

• Continuing ABAC library Development
– SAML/Shib attributes
– More complex logics
– More bindings
– More utilities

• Bigger Stuff

What's Missing: Attribute
Infrastructure

• Certifiers
– Well-known certifiers of users
– Well-known certifiers of facilities
– Policies for scalable attribute assignment

• Attributes
– Few, well-understood attributes
– Anchors for new facilities/users

Policy Tools

• Policy Visualization and Configuration
– Who can do what
– Why can they

• Logging Visualization and Auditing
• Certificates are exchange format
• Users Prefer Better Abstractions

Wrapup

• Described and Motivated the ABAC model
– Powerful formal logic
– Attribute based semantics
– Rich delegation power

• Showed ABAC library
– Real code
– Ongoing development

• Future Needs
– Policy tools
– Infrastructure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

