
Sponsored by the National Science Foundation

GENI OpenFlow Service Abstraction

Tim Upthegrove, GPO

October 22, 2014



Sponsored by the National Science Foundation 2

Overview

• Existing solution

• Current problems

• Proposed solution

• Progress



Sponsored by the National Science Foundation 3

Existing Solution

● Operators run and install 
slicer (Flowvisor) for OF 
aggregate

● Flowvisor can do a lot:
● Can slice by anything
● Flowmod augmentation

● Operators run a diverse 
substrate of OpenFlow gear

● Experimenters deal with 
complexity of substrate and 
limitations of slicer



Sponsored by the National Science Foundation 4

Current Problems

• The substrate is intentionally diverse and necessarily 
complex, but it shouldn't be so difficult to use

• Slicing layer is more complex than necessary, and it is 
difficult to update GENI-wide

• Researchers are working around the same GENI-specific 
problems that have nothing to do with their research...

• And aggregate developers with OpenFlow substrates are 
solving some of those same problems!



Sponsored by the National Science Foundation 5

Complexity Sausage

RFC 6670 Section 3.4:

“... simplification in one element of the system 
introduces an increase (possibly a non-linear one) 
in complexity elsewhere. This creates the 'squashed 
sausage' effect, where reduction in complexity at 
one place leads to significant increase in complexity 
at a remote location.”

Let's put complexity where stability is not critical and 
where primary stakeholder has direct control over it.



Sponsored by the National Science Foundation 6

Proposed Solution

● Operators run and install 
simpler slicer with fewer 
requirements and features

● Add community driven 
service abstraction layer for 
solving GENI-specific issues

● Operators run a diverse 
substrate of OpenFlow gear

● Experimenter can focus on 
research problem



Sponsored by the National Science Foundation 7

Proposed Solution (cont'd)

• Overarching goals: Hide complexity where it is not required and 
increase stability

• Potential features of service abstraction layer
– Normalize experimenter view of network

– Layer of indirection for compilers or translators

• Benefits of splitting service abstraction layer from slicer

– Slicer will require fewer GENI-wide updates

– Service abstraction layer can develop at its own pace

– Service abstraction layer can be used to develop GENI 
services regardless of choice of slicer

• The service abstraction layer is not required for experimenters, 
developers, or operators who want to deal directly with substrate



Sponsored by the National Science Foundation 8

Slicer Progress

• Requirements
– http://groups.geni.net/geni/wiki/OpenFlow/Slicer/Requirements

– Still working on finalizing these before making a 
formal test plan

– Allows us to be flexible on the slicer software

– Defines what the service abstraction can expect

• Inputs welcome!

• Looking at software options compared to 
requirements to make sure they are realistic

• One big open question from a first round of feedback 
from operators...



Sponsored by the National Science Foundation 9

Key Slicer Question

• Should we drop unmatched traffic by default?
– Similar to how later OF versions work

– Experimenters can still install rules to forward 
unmatched traffic to their controller

• Pros:
– Simple approach that improves stability

– Simplifies requirements (and software)

• Cons:
– Different from what we do today

– Breaks ability to use out-of-the-box controllers



Sponsored by the National Science Foundation 10

Service Abstraction Progress

• Capturing substrate capabilities
– We have a lot of this from public manuals

– There is still a lot missing

– Need to define a process to make this viable in 
the long term

● Likely requires resource owner input
● Changes occur if substrate updates occur

• Documentation generation

• Some basic services being developed



Sponsored by the National Science Foundation 11

Questions?


	Slide 1
	Slide2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

