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Abstract

Today’s Internet which provides communication channels with best-effort end-
to-end performance is rapidly evolving into an autonomic global computing plat-
form. Achieving autonomicity in the Future Internet will require a performance
architecture that: (a) allows users to request and own ‘slices’ of geographically-
distributed host and network resources, (b) measures and monitors end-to-end host
and network status, (c) enables analysis of the measurements within expert sys-
tems, and (d) provides performance intelligence in a timely manner for application
adaptations to improve performance and scalability.

We describe the requirements and design of one such “Future Internet Perfor-
mance Architecture” (FIPA), and present our reference implementation of FIPA
called ‘OnTimeMeasure’. OnTimeMeasure comprises of several measurement-
related services that can interact with each other and with existing measurement
frameworks to enable performance intelligence. We also explain our OnTimeMea-
sure deployment in the Global Environment for Network Innovations (GENI) in-
frastructure - a collaborative research initiative to build a sliceable Future Inter-
net. Further, we present an application-adaptation case study in GENI that uses
OnTimeMeasure-enabled performance intelligence in the context of dynamic re-
source allocation within thin-client based virtual desktop clouds. We show how a
virtual desktop cloud provider in the Future Internet can use the performance intel-
ligence to increase cloud scalability, while simultaneously delivering satisfactory
user quality-of-experience.

∗This material is based upon work supported by the National Science Foundation under award numbers
CNS-1050225 and CNS-0940805, VMware, and Dell. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation, VMware or Dell.
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1 Introduction

1.1 Future Internet Overview
Today, the Internet primarily acts as a communication channel between end-systems
without any performance guarantees in the quality of end-to-end connectivity provided.
This is popularly called as the ‘best-effort’ service model. The main difficulty in pro-
viding quality guarantees arises from the fact that no single service provider or entity
controls all the network links and hosts in an end-to-end path. The current Internet is
formed by federations of individual networks which peer each others traffic for mu-
tual benefit to extend their network boundaries. Yet, they do not share each other’s
performance measurements as it may expose bottlenecks that are undesirable when
competing for business from the same customers. Although this federated nature has
been a barrier to performance transparency and quality guarantees, it is the architec-
tural cornerstone that has enabled the current Internet to scale successfully across the
world.

Figure 1: A User Slice in the Future Internet

Given the demanding nature of emerging multimedia-and-data rich applications
that require quality guarantees, slowly but steadily a new Internet – referred to as the
Future Internet (FI), from here on – is evolving. Key for the success of the FI is to retain
the fundamental strength of the current Internet, i.e., the federated nature of networks,
but also provide end-users with better control and performance transparency over the
core Internet resources. This evolving FI is being driven primarily by improvements
in virtualization [1] technology at end-hosts and core network switches/routers. The
Global Environment for Network Innovation (GENI) [2] project is the early realization
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of such an FI vision. GENI is funded through the U.S. National Science Foundation and
is a ‘sliceable’ Internet infrastructure being co-developed by academia and industry. A
GENI user as shown in Figure 1 can request a slice of virtualized resources from both
end-host substrates –wired and wireless– and core network for experimentation of an FI
application. The goal of GENI is to foster innovations in FI architectures, protocols and
applications through experimentation in both controlled and real-world environments
with actual users [3].

1.2 Autonomic Future Internet Applications
As the Internet evolves, the current general purpose network will need to tightly cou-
ple with applications to form a global computing platform. This platform will have
customizations to deliver quality guarantees for different applications, each in their
own respective user slices. In addition, every application in this environment needs
to be aware of the status of host and network components that support its execution,
and should have the ability to quickly adapt to any changes that limit performance and
scalability within user slices. The idea of having networks being tightly coupled with
applications can already be seen in the current Internet trends in the context of con-
tent delivery networks (e.g., Akamai) and private point-to-point links connecting data-
centers of major application service providers (e.g., Amazon). In such tightly-coupled
platforms, applications and their resources will need to be managed in a distributed
manner, the applications need to rapidly-scale with user demand, and the rate-of-failure
as well as time-to-repair should be as small that it does not impact user quality-of-
experience (QoE). Thus, applications within user slices need the FI to have automated
adaptations with autonomicity attributes such as being self-configuring, self-managing,
self-monitoring, self-healing and self-optimizing.

Figure 2: Autonomic FI application life-cycle

A typical autonomic FI application life-cycle is likely to go through four phases in
a cyclical manner as shown in Figure 2:

1. Discover: In this phase, the application would identify the host and network re-
sources needed, discover them and reserve them in a geographically-distributed
user slice.
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2. Configure: Next, the application would configure the reserved application re-
sources meet the quality guarantees expected by the user; it would also configure
other instrumentation and measurement resources during this phase at both the
host and network.

3. Measure: Next, the application would start monitoring the performance of the
underlying host and network resources, as well as its own behavior.

4. Analyze: Lastly, the application would feed the measurements into expert-systems
to derive performance intelligence, which can inturn be used to timely trigger
reconfiguration of resources or healing of application behavior to improve per-
formance and scalability within a user slice.

Although these phases are functionally separate, they are likely to be automated
to operate in a continuous manner during an application’s lifetime within a user slice.
Nevertheless, some of the tasks in the FI application life-cycle phases will still require
human involvement at the application service provider level, particularly for adapta-
tions that may be critical and could affect large numbers of user slices.

1.3 Future Internet Performance Intelligence
Given that enabling performance intelligence in a timely manner is central to sup-
port the autonomic nature of FI applications, measurements that indicate ‘host-and-
network status awareness’ in a user slice need to be carefully instrumented, orches-
trated, archived and analyzed. Thus, we can envisage a performance architecture for
the FI viz., “FIPA” comprising of several services that interoperate with each other and
with existing measurement frameworks such as Cricket [4] and perfSONAR [5]. To-
gether, they will satisfy specific performance intelligence use cases of FI applications
both at the user as well as application service provider levels. FIPA should also enable
FI applications to use performance intelligence information at the hop, link, path and
slice levels for determining actionable instances for adaptation. Further, FIPA should
facilitate validation of the adaptation effectiveness with additional performance intelli-
gence in the next life-cycle iteration, and so on. Existing works that share our vision of
performance intelligence for management of the FI include [6] - [8].

1.4 Paper Organization
The remainder of this paper is organized as follows: In Section II, we detail the de-
sign motivations and functionalities of our envisioned FIPA services. In Section III,
we present our reference implementation of FIPA called ‘OnTimeMeasure’ [9] in the
GENI infrastructure. We describe the various OnTimeMeasure software modules that
can be deployed in both centralized and distributed manners. In addition, we describe
how the OnTimeMeasure software modules interoperate with other GENI components
at the substrate plane, application plane, and measurement plane. Further, we describe
how primitives in OnTimeMeasure can be customized to monitor application-specific
metrics. In Section IV, we present an application-adaptation case study in a GENI slice.
The application-adaption uses OnTimeMeasure-enabled performance intelligence in
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the context of dynamic resource allocation within thin-client based virtual desktop
clouds (VDCs). We show how a virtual desktop cloud provider (CSP) in the FI can
use the performance intelligence to increase cloud scalability by supporting a higher
number of virtual desktops per datacenter, while simultaneously delivering satisfactory
user QoE. Section V concludes the paper.

2 Future Internet Performance Architecture

2.1 Design Motivations
The core design motivations of the FIPA can be categorized into two broad perspec-
tives. The first perspective relates to satisfying the use-cases in the FIPA design from
the user side as well as from the application service provider side. The second perspec-
tive relates to design principles that make the FIPA extensible, fault-tolerant, standards-
compliant and secure. In the following, we describe the design motivations for FIPA
based on these two perspectives. We remark that the below descriptions are a com-
bination of the authors’ original ideas, as well as are based on feedback from group
discussions in the GENI community forums [10].

The primary use cases from the user side include: (i) Have I got the system and
network resources I asked (i.e., purchased) in my slice? (ii) Is my slice environment
functioning to my expectation over my slice lifetime? (iii) Can a problem occurence
in my slice environment that impacts my QoE be identified and notified to my applica-
tion to adapt and heal? (iv) Can problem information also be shared with me and my
application service provider if my application cannot automatically heal itself?

Correspondingly, the primary use cases from the application service provider side
include: (i) Can I check if the user got the system and network resources he/she asked
(i.e., purchased) in user’s slice? (ii) Can I monitor all the detailed active (e.g., Ping,
Traceroute, Iperf) and passive (e.g., TCPdump, Netflow, Router-interface statistics)
measurements at end-to-end hop, link, path and slice levels across multiple federated
ISP domains? (iii) Can I analyze all the measurements to offline provision adequate
resources to deliver satisfactory user QoE, and online i.e., real-time identify anomalous
events impacting user QoE?

To make the FIPA extensible, fault-tolerant, standards-compliant and secure, the
FIPA can be designed based on principles of service-oriented-architecture. In that vein,
the FIPA for extensibility will need to be comprised of a set of specialized services,
each with a defined functionality and web service interface specification. This should
allow the services to interoperate with each other through communication layers by ex-
changing control messages in order to request, generate, archive, discover, analyze and
present data from various measurement sources. The architecture is inherently fault-
tolerant because of the distributed and modular nature of the design. Entire services or
individual modules can be replicated to avoid failure or for load-balancing purposes. In
terms of standards-compliance, the potential choices could include SOAP/XML-RPC
based messaging services for information exchange between the various services, Re-
source Description Framework formats adopted in GENI for resource discovery and
setup [11], as well as request/response schemas of measurements being standardized
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Figure 3: FI Performance Architecture

in the Open Grid Forum [5]. Further, the security issues of FIPA can be encompassed
by existing advances in federated identification such as OpenID and Shibboleth [10].

2.2 FIPA Services
Figure 3 shows the FIPA services interacting with each other via communication lay-
ers in such a manner that the measurement data volume collected at the slice resources
is ‘comprehensive’ i.e., large in terms of metrics to quantify performance of the end-
to-end hop, link, path and slice levels. However, as the performance intelligence is
processed and delivered to the application, the measurement data volumes are ‘ab-
stract’ i.e., small in terms of metrics to guide actionable instances for adaptation. In the
following, we briefly describe the composition and functions of each of our envisioned
FIPA services:

Measurement Point (MP) Service: An MP refers to the instrumentation that taps
into “measurement data sources” such as network hops and/or system nodes (i.e., pas-
sive measurements), or probes end-to-end network paths (i.e., active measurements) to
capture and format measurement data. Several MPs are installed within the user slice
such that they execute the tap/probe control utilities. MP services provision wired net-
work measurements such as availability, TCP/UDP throughput, available bandwidth,
delay, jitter and loss. In addition, MP services provision wireless network measure-
ments such as utilization, signal strength, and signal-to-interference/noise ratio.

Measurement Collection (MC) Service: MC is comprised of programmable compo-
nents that collect, and locally store measurement data using database design principles

6



that allow efficient storage and rapid query capabilities. They can co-reside with MPs
on the same host resources or can be installed on separate hosts within an user slice.
MC services support measurement data query with pull/push or pub/sub mechanisms
using protocols such as SNMP, SCP, or HTTP.

Measurement Orchestration (MO) Service: This service relies on an interpreter to
gather measurement requests from authorized users via command-line or graphical user
interfaces. It manages various MPs/MCs via schedulers to perform on-going sampling
(e.g., periodic, random, stratified random, adaptive) and on-demand sampling of both
active and passive measurements. The MO service is aware (through discovery/lookup
interfaces) of slice topology, control actors, control actions, data sources and data types
in order to cater measurement requests with any specific timing demands. The MO ser-
vice further enforces resource policy constraints such as how much bandwidth to use,
and which measurements have higher priority when concurrent measurements need to
be orchestrated under resource contention scenarios.

Measurement Data Archive (MDA) Service: This service allows MPs and MCs to
publish a stable archive of measurement data and meta-data, for purposes such as: shar-
ing performance data, analyzing anomaly events, enabling measurement correlations
for ground-truth verification (about cause of anomaly event), and making it possible
to provide long term access of measurement data for authorized users. It also allows
cataloging measurement data indexes for future search and retrieval purposes.

Measurement Analysis and Presentation (MAP) Service: This service is comprised
of programmable components that analyze and visualize measurement data in MDA for
authorized users. It supports various configurable dashboard tools, and other data chart-
ing toolkits. It uses the measurement data to analyze slice-level metrics; for example, a
user will be able to check conformance of resource allocation to the resources assigned
(i.e., purchased) with slices, and for on-going monitoring of the user slice environ-
ments. This service enables applications to detect impending or perceived problems
for timely adaptation.

Measurement Access Control (MAC) Service: At the heart of every FIMA service
are the access control and data privacy mechanisms that are needed to authenticate
users or service entities in order to ensure intended use of measurement resources and
data collections. This service leverages federated user and policy databases to allow
other FIMA services to interoperate securely with each other.

3 OnTimeMeasure: FIPA Reference Implementation

3.1 Software Modules
Figure 4 shows the four main software modules in OnTimeMeasure [9] in a GENI slice:
(i) Node Beacon, (ii) Root Beacon, (iii) OnTime Beacon, (iv) OnTime Control. The
Node Beacon module supports the MP and MC services. The Root Beacon supports
the MO, MAP, and MDA services. GENI user installs the Node and Root Beacons i.e.,
an OnTimeMeasure measurement instance in the user’s slice based on the MAC ser-
vices provided by GENI wired and wireless substrate providers (e.g., ProtoGENI [19],
PlanetLab [20]). To control the measurement services hosted by the Node and Root
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Figure 4: OnTimeMeasure Software Modules

Beacons within a GENI user slice, a GENI user can interactively use either the web-
interface client viz., OnTime Beacon, or invoke automated scripts through command-
line interface client viz., OnTime Control. The OnTime Beacon also has “Adminis-
trator” privileges, where a substrate provider or measurement service provider or even
GENI operations can host the user web-portal, manage measurement service user cre-
dentials, discover and manage measurement service instances in user slices, and view
meta-data about user-initiated slice measurements.

A “Policy Authority” is part of the OnTime Beacon web-portal that determines the
list of measurement capabilities that a user is permitted to request in his/her slice. The
measurement capabilities permitted are based on pre-defined resource policies in the
measurement topology. The policies enforced for measurements scheduling include:
(a) semantic priorities based on user roles to resolve measurement scheduling con-
flicts, and (b) measurement level restrictions (e.g., allowable measurement bandwidth
and measurement duration) to regulate the amount of network measurement traffic per-
mitted on network paths. Once a measurement request has been cleared by the Policy
Authority, the measurement request will be processed to generate slivers in experi-
ment slices with installs of Node and Root Beacon software. In addition, the user can
add/remove a set of measurement tasks for the OnTimeMeasure scheduler to process
and generate measurement timetables for Node Beacons. Further, the user can start,
stop and also check status of the various measurement service components. The mea-
surement service components whose status is reported include: (a) Slice Accessibility,
(b) Root Beacon Scheduler, (c) Node and Root Beacon Communications, (d) Measure-
ment Data Collector, (e) Analysis and Publish Authority, and (f) Measurement Data
Visualization. We remark that the “Policy Authority” can be integrated within any
enterprise policy-based management system [29] in order to implement any business
policies and procedures to configure/control compute, network and storage resources,
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Figure 5: Centralized OnTimeMeasure Deployment

and their associated user-application services. Further, the performance intelligence
provided by OnTimeMeasure can also be used reversely as stimuli to the policy-based
management systems to modify the business policies and procedures. The “Publish
Authority” is also part of the OnTime Beacon web-portal that provides raw and pro-
cessed measurement results back to the user. The processed measurement results could
correspond to: (a) time series of active measurements over a time range, (b) time se-
ries of active measurements over a time range with associated network performance
anomaly events, and (c) time series of active measurements over a time range with
associated network weather forecasts.

3.2 Software Deployment
The OnTimeMeasure software modules can be deployed either using a “Centralized
Orchestration” architecture, or a “Distributed Orchestration” architecture. The cen-
tralized orchestration allows measurement scheduling for continuous monitoring, per-
sistent measurements storage in an user’s experiment slice and processed network
measurement feeds. Such functionality will generally be useful for “network weath-
ermaps” and long-standing experiments with advanced measurement analysis capabil-
ities. In comparison, the distributed orchestration allows measurement scheduling of
on-demand measurement requests without need for persistent measurements storage.
Such functionality will generally be useful for users needing one-off or occasional raw
measurement tool outputs.

Figure 5 shows the OnTimeMeasure deployment for centralized orchestration in
GENI. We can see that the GENI user interacts with the Policy Authority and Publish
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Figure 6: Distributed OnTimeMeasure Deployment

Figure 7: Centralized Measurement Request Submission
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Figure 8: Service Control

Authority in GENI using the Internet. The Root Beacon does not rely on experimental
network that carries the FI application traffic to interact with the Node Beacons, but
instead uses the GENI Control Network. The reason is that the FI application traf-
fic can become unstable and lead to network partitions since a GENI user sometimes
may be exploring with experimental protocols and software. The active measurements
collected will be on the experimental network paths to which the Node Beacons will
be connected. Figure 6 shows the GENI deployment for distributed orchestration. No
Root Beacon will be installed when a user demands a distributed orchestration for the
measurement service. The Node Beacons again do not rely on experimental network
to interact with each other for exchanging measurement schedules, but instead use the
GENI Control Network. The measurements at Node Beacons will be collected on the
experimental network paths.

OnTimeMeasure web services allow GENI users to interact with the measurement
service functions. Both “system-specific” web-services with our service definitions,
and “GENI-specific” web services with GENI compliant schemas i.e., those standard-
ized within the GENI community can be supported. The measurement functions sup-
ported by OnTimeMeasure can be broadly grouped under: (i) Measurement Request
Submission (shown in Figure 7), (ii) Measurement Service Control (shown in Figure 8),
and (iii) Measurement Results Query (shown in Figure 9). In the case of centralized or-
chestration, dashboards are supported, whereas in the case of distributed orchestration,
GENI user measurement requests are handled in real-time as shown in Figure 10.

3.3 GENI Interoperability
We now describe the ability of OnTimeMeasure to interoperate with other GENI com-
ponents at the substrate plane, application plane, and measurement plane. OnTimeMea-
sure has been developed to discover and configure substrate resources in the GENI’s
ProtoGENI [19] and PlanetLab [20]. Both these substrates allow GENI users to create
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Figure 9: Centralized Measurement Query

Figure 10: Distributed Measurement Result
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slices that can be registered with OnTimeMeasure, which inturn allows GENI users to
control the measurement service functions with OnTime Beacon or OnTime Control.
In addition, OnTimeMeasure has been integrated with an experimenter workflow tool
viz., GENI User Shell (Gush) [21] that allows a user to control experiment applications
within ProtoGENI and PlanetLab via a user-shell commands. Further, OnTimeMea-
sure has been integrated with several other measurement frameworks such as the GENI
Instrumentation Tools (InsTools) [22], as well as the VMware power shell tools (Pow-
erTools) [23]. Each of these tools access several measurement data sources. For e.g.,
InsTools allows a GENI user to obtain passive packet-captures, SNMP and NetFlow
measurements; PowerTools allows a GENI user to monitor virtualized environments in
terms of resource consumption at the virtual machine level, as well as the host level. In
the GENI measurement plane context, OnTimeMeasure has also been integrated into
the Digital Object Repository [24] that allows archiving experiment slice measurement
datasets along with meta-data collected by OnTimeMeasure into the GENI Measure-
ment Data Archive. Use Cases supported with the Digital Object Repository integra-
tion include: (a) archive and share subsets of experiment results, (b) archive and share
entire experiment slice measurement results, and (c) backup/restore entire experiment
slice measurement results.

Given a FI possiblity where OnTimeMeasure interoperates with several measure-
ment frameworks, there will arise a situation where there will be large number of mea-
surement requests that need to be orchestrated in FI slices. The measurement orches-
tration needs to be such that it does not affect application (e.g., CPU cycles needed for
monitoring of a resource’s performance should not impact the CPU cycles needed for
actual application) and also measurement collection should not produce conflicts (e.g.,
two Iperf tools invoked at the same time along common hosts or network paths) [25].
Orchestration should also consider minimizing “cycle time” so that more frequent real-
time network status updates can be provisioned to application. Cycle time is defined as
the time taken to complete one round of measurements execution over a measurement
topology. Smaller the cycle time, larger the number of measurement rounds, and thus
more detailed network status can be sampled. To reduce the cycle time, it is essential
to reduce the idle periods in measurement schedules for each cycle time, while still
not affecting the application and avoiding measurement conflicts. However, existing
works [25] [26] [27] use “open loop” principles for scheduling measurements that con-
servatively guess measurement execution times. This conservative guessing results in
many idle periods in measurement execution schedules. Consequently, existing open
loop methods do not scale to accommodate FI measurement loads.

OnTimeMeasure’s web-services architecture easily allows measurement tools at
MPs to provide feedback i.e., in a “closed loop” manner to the MO service when their
measurement execution is completed. Leveraging this intelligence, MO could schedule
other queued measurements on MPs in the idle periods that do not affect the applica-
tion or cause conflicts with other scheduled measurements. Figure 11 and Figure 12
show how OnTimeMeasure handles full-mesh, tree and hybrid measurement topolo-
gies for increasing number of measurement requests at MPs, and produces significant
improvements in cycle times. The results were obtained by running an instance of On-
TimeMeasure in a GENI slice comprising of 21 servers in ProtoGENI. The full-mesh
corresponds to the case where measurements are collected between all the servers over
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Figure 11: Full Mesh Measurement Topology Comparison

the entire measurement topology. The tree case is where measurements are collected
only between neighboring servers in the measurement topology. Lastly, the hybrid case
is where measurements are collected in a full-mesh manner for a subset of servers in
the measurement topology, and tree manner for the other servers that are not part of
the full-mesh subset. In all these 3 cases, we can clearly see that OnTimeMeasure’s
closed loop implementation can be leveraged to notably improve cycle times in MO in
comparison to existing open loop implementations, and thus OnTimeMeasure is suited
for handling large number of measurement requests that will need to be orchestrated in
FI slices.

Tree Measurement Topology Hybrid Measurement Topology

Figure 12: Comparison of Open Loop and Closed Loop Measurement Orchestration

3.4 GENI Customization
We now describe how OnTimeMeasure can be customized via web services to work
with any application-specific metrics using a feature called “Custom Metric Integra-
tion”. This feature is similar to a capability in the Amazon CloudWatch measurement
service [30], where customers of Amazon Web Services can integrate their custom
application metrics into their monitoring activities using web services. Such a cus-
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Figure 13: OnTimeMeasure’ “Custom Metric Integration” Feature Primitives

tomization is a key requirement since each GENI experiment is unique; often, users
want to not only use off-the-shelf tools (e.g., Ping, Netflow) within measurement ser-
vices in GENI, but also other tools they have developed or others have developed that
are relevant to their experiment. Figure 13 shows the primitives (Control Actors, Data
Sources, Data Structures, Control Actions) that need to be configured by the users
within OnTimeMeasure in the custom metric integration process.

To better understand the primitives, let us consider a case study of dynamic resource
allocation within thin-client based virtual desktop clouds (VDCs), where allocations
are based on OnTimeMeasure’ feedback of network health from the client, and load on
the server (for details, please refer to Section IV). The specification of primitives in the
VDC experiment can be illustrated as follows:

1. Control Actors: Actors refer to VDC experiment users that access the application
data or share the application data with other actors.

2. Data Sources: These are resource monitors or data generation tools deployed
in Node Beacons within an experiment slice; the tools communicate with each
other to perform active measurements or collect passive measurements within
a host in an on-going or on-demand basis. A specific data source example is
PowerTools that monitors memory, CPU, and network health of each host.

3. Data Structures: These refers to the sets of measurement data types that would
be stored in the Root Beacon database. Examples of data types can be ‘Host:
string’, ‘Resource Pool: string’, ‘Sample Time: timestamp’, ‘CPU
Load: float’.

4. Control Actions: They relate to the actor controls such as start/stop times of
the data generation tools, or sampling frequency. Example of a control action
for sampling can be to configure PowerTools to query memory usage every 10
seconds.
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Figure 14: Illustration of F-RAM limitations in Virtual Desktop Clouds

4 FIPA Case Study: Dynamic Resource Allocation in
Virtual Desktop Clouds

We now present an application-adaptation case study in a GENI slice that is based
upon a demonstration we presented during the 10th GENI Engineering Conference
(GEC10) [2]. The demonstration uses OnTimeMeasure-enabled performance intelli-
gence in the context of dynamic resource allocation within thin-client based virtual
desktop clouds (VDCs). In the following, we first provide an overview of the resource
allocation problem. Next, we describe application-adaptation that uses OnTimeMeasure-
enabled performance intelligence information within a VDC. Lastly, we present our
GENI slice setup for our VDC experiments and the obtained experiment results.

4.1 The Resource Allocation Problem
We consider a futuristic scenario, where users at home or at enterprises subscribe for
virtual desktops (VDs) with a VDC service provider (CSP), who ships to subscribers
set-top boxes that function as thin-clients. The drivers for users to transition from
traditional desktops to VDCs are obvious: (i) desktop support in terms of operating
system, application and security upgrades will be easier to manage, (ii) the number
of underutilized distributed desktops unnecessarily consuming power will be reduced,
and (iii) mobile users will have wider access to their applications and data.

Currently, CSPs allocate resources to VD requests based primarily on CPU and
memory measurements [12] - [15]. There is surprisingly sparse work [16] [17] on
resource adaptation coupled with measurement of network health and user quality of
experience (QoE). It is self-evident that any cloud platform’s capability to support large
user workloads is a function of both the server-side desktop performance as well as the
remote user-perceived QoE. In other words, a CSP can provision adequate CPU and
memory resources to a VD in the cloud, but if the thin-client protocol configuration

16



does not account for network health degradations and application context, the VD will
be unusable for the user. Also, the CSP has to allocate resources to individual Virtual
Desktops (VDs) in a way that decreases the resource consumption cost, while at the
same time maximizes the user QoE. Hence, lack of proper performance intelligence
in terms of “network-and-human awareness” in cloud platforms inevitably results in
costly guesswork and over-provisioning while managing physical device and human
resources, which consequently annoys users due to high service cost and unreliable
quality of experience.

Figure 14 illustrates the above drawback of current resource allocation schemes in
a typical VDC provider. We can see that the fixed resource allocation models (F-RAM)
used by CSPs results in situations where a Mobile user is provisioned excess resources
that results in satisfactory QoE (Qexcess), whereas a Scientist or Home user are provi-
sioned with inadequate resources, which results in unsatisfactory QoE (< Qmin), and
the CSP incurs a high cost of operation. This problem is compounded by the fact that
users use a wide range of applications (e.g., Web browsing, Video playback) with dif-
ferent resource consumption profiles, and connect to data centers within a VDC over
network paths with different network health conditions.

4.2 Application Adaptation

Figure 15: U-RAM allocations when there are: (a) New VD requests handling with
freely available resources, (b) New VD requests handling with all available resources
allocated, and (c) New VD request rejected when SLA violation situation occurs

To overcome this problem, we compare F-RAM with a utility-directed1 resource
allocation model (U-RAM) that builds upon earlier works such as QoS-based resource
allocation model (Q-RAM), originally proposed in [28]. The U-RAM adapts the re-
source (i.e., CPU, memory and network bandwidth) allocation dynamically based on
the real-time performance intelligence feedback from system, network and user QoE
measurements that can be collected using OnTimeMeasure.

1A utility function indicates how much of application performance can be increased with larger resource
allocation. Beyond a certain point, application utility saturates and any additional resource allocation fails to
further increase application performance.
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Figure 16: Demonstration of Virtual Desktop Cloud with U-RAM in GENI

The fundamentals that guide our U-RAM solution can be illustrated by the exam-
ple shown in Figure 15 involving 3 desktop pools being provisioned at a data center
site within a VDC. We can see that U-RAM allocates resources to a new VD request
such that it results in utility saturation quality (Qmax) when there are freely available
resources. When all available resources are allocated under light loads, U-RAM al-
locates resources to new VD requests such that all the VDs operate below Qmax but
above Qmin i.e., Qset range. Lastly, when all available resources are allocated under
heavy loads, U-RAM allocates Qmin resources to both the already allocated VDs as
well as in the case of the new VD. Once it is determined that provisioning a new VD
request will cause violation of user service level agreement (i.e, resource allocation
causes quality to drop below Qmin), all new VD requests arriving at the data center
thereafter are either rejected or directed to alternate data center resource sites with the
VDC. The key to improved performance in U-RAM is the performance intelligence
feedback from OnTimeMeasure that enables U-RAM to continously discover the re-
quired resources in a VDC, configure desktop pools to suit different user application
groups, measure and analyze their performance in order to re-discover and re-configure
resources, and so on - to improve the overall cloud scalability, while delivering satis-
factory user QoE.

4.3 Application Setup in GENI
The experiment setup on GENI is shown in Figure 16. We created two GENI slices for
the experiment, one slice for the VDC data center environment and the other slice for
distributed thin-client user sites. The ‘data center’ slice consisted of two data centers,
one at The Ohio State University and the other at The University of Utah. The data
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Algorithm #VDs Requested/Allowed Total /Minimum
CPU

Allocation

U-RAM 12/10 8 GHz /800 MHz 800 MHz
F-RAM-1 12/12 8 GHz /800 MHz 500 MHz
F-RAM-2 12/5 8 GHz /800 MHz 1.4 GHz

Table 1: Comparison of VD connections handled by U-RAM and F-RAM in GENI
Demonstration

Figure 17: U-RAM versus F-RAM-1 to show Improved Performance

center at Utah ran the U-RAM algorithm and the data center at Ohio ran the F-RAM
algorithm. A number of thin-clients were launched from geographically distributed
locations within the ‘user slice’ to make VD requests to either data center for load
generation. The ‘user slice’ included a demo site at the conference venue in Puerto
Rico which initiated two separate thin-client connections to each data center. These
two demo thin-clients were running identical Matlab-based point-cloud animations of
a horse (but with different colors; green for U-RAM and blue for F-RAM), to compare
their application performance. Node Beacon instances (integrated with PowerTools) of
the OnTimeMeasure framework were deployed at all the thin-client sites in the ‘user
slice’ to measure the network and system performance, and a Root Beacon instance
of the OnTimeMeasure framework was deployed at the Ohio data center to collect the
Node Beacon measurements.

4.4 Application Adaptation Results from GENI
The collected measurements in the Root Beacon were used by the U-RAM algorithm to
make dynamic resource allocation decisions. We illustrate this decision making using
two scenarios we demonstrated at GEC10, one where the U-RAM delivers “improved
performance” than F-RAM, and in the other where U-RAM achieves “increased scal-
ability” (i.e., more number of VDs are handled) while guaranteeing the same level of
user QoE performance compared to F-RAM.

The performance comparison results between U-RAM and F-RAM at GEC10 are
summarized in Table 1. Each of the two data centers we deployed allocates 8 GHz
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Figure 18: U-RAM versus F-RAM-2 to show Increased Scalability

of total CPU resources and each user needs at least 800 MHz allocation for satisfac-
tory user QoE performance; we characterized satisfactory user QoE performance as
the “smooth” rotation of the point-cloud horse animation in Matlab, and unsatisfac-
tory user QoE performance as the “irregular” rotation. The U-RAM algorithm with
such performance intelligence functions as follows: consider a case when there are 12
user VD connection requests, it will accept 10 of them and rejects 2 requests. The
10 users will be allocated 800 MHz each and all of them will deliver satisfactory user
QoE performance. U-RAM’s rejection of 2 VD connections is justified, since these 2
connections will anyway not deliver satisfied user QoE performance even if they were
allocated resources and will actually affect the QoE performance of the already allo-
cated VDs. On the other hand, for the same case, two different F-RAM allocations are
possible, one in which F-RAM under-allocates (defined as F-RAM-1 in Table 1) i.e.,
500 MHz per VD, and the other in which F-RAM over-allocates (defined as F-RAM-2
in Table 1) i.e., 1.4 GHz per VD. In the under-allocation possibility, F-RAM-1 accepts
all 12 connections, but none of them deliver satisfactory user QoE since all of them
are not allocated adequate resources, while 2 GHz CPU capacity is still available for
allocation. This results in an irregular point-cloud animation rotation as illustrated in
Figure 17. In the over-allocation possibility, F-RAM-2 delivers satisfactory user QoE
performance for only 5 VD users, while rejecting 7 connections. U-RAM compared
to F-RAM-2 supports more VDs while guaranteeing the same level of user QoE per-
formance, and hence achieves better scalability, as illustrated in Figure 18. Thus, the
OnTimeMeasure framework enables performance intelligence in novel adaptive appli-
cations such as dynamic resource allocation in VDCs in the FI.

5 Conclusions and Outlook
The FI, that is slowly but steadily evolving, is likely to be application centric, where the
network and application are tightly coupled to deliver improved performance. Applica-
tion service providers will own and operate ‘slices’ on the FI, which can be configured
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to suit user needs at Internet-scale. In this paper, we envisioned a Future Internet Per-
formance Architecture viz., FIPA that is extensible, fault-tolerant, standards-compliant
and secure. In addition, we described our reference implementation of FIPA called
‘OnTimeMeasure’ that supports services to ‘measure’ the performance within a user
slice, ‘analyze’ and derive ‘intelligence’ that can be used in timely manner for applica-
tion adaptations to improve performance and scalability.

We evaluated the effectiveness of OnTimeMeasure in the GENI infrastructure,
which is an FI platform being developed by academia and industry partnerships. We
demonstrated the effectiveness of closed-loop orchestration used in OnTimeMeasure,
which is critical for interoperability with other existing measurement services, particu-
larly when large number of application specific measurements need to be orchestrated.
Lastly, we used OnTimeMeasure-enabled performance intelligence to compare utility-
driven resource allocation schemes in virtual desktop clouds. Our results from the
GENI infrastructure experiments demonstrated how performance intelligence enables
autonomic nature of FI applications to mitigate the costly resource overprovisioning
and user QoE guesswork, which are common in the current Internet.
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